

Empirical	Analysis	of	Prompt	Engineering	Strategies	for	
Smart	Contract	Vulnerability	Detection:	A	Multi‐model	

Comparison	

Aditya Shankar

Computer Science and Engineering Dept., Indian Institute of Information Technology, Design and
Manufacturing, Kurnool, Andhra Pradesh, India.

Email: aditya.10393@gmail.com
Manuscript submitted November 16, 10, 2025; accepted December 2, 2025; published January 27, 2026.
doi: 10.18178/JAAI.2026.4.1.1-10

Abstract:	Smart contract vulnerabilities have resulted in billions of dollars in losses across Decentralized
Finance (DeFi) ecosystems. While recent work explores fine-tuned Large Language Models (LLMs) for
vulnerability detection, little research systematically examines prompt engineering strategies with
pre-trained models. This paper presents the first comprehensive empirical study comparing five
code-understanding LLMs (CodeLlama, CodeBERT, InCoder, DeepSeek-Coder, StarCoder) for smart contract
security analysis without fine-tuning. Through 15 experimental iterations testing different prompting
approaches across 21 vulnerability types using real DeFi exploit patterns, we discover a strong inverse
correlation between prompt complexity and detection success: simple prompts (200–400 characters)
achieve 100% response reliability while complex structured prompts (1500+ characters) result in
complete failure. Our multi-model comparison reveals dramatic architectural differences: CodeBERT and
InCoder achieve 92% accuracy but 0% recall (classifying everything as safe), while CodeLlama
demonstrates superior detection with 66.67% recall using few-shot learning. DeepSeek-Coder offers
optimal balance with 33.33% recall at 6.1 s inference time. These findings establish baseline performance
metrics for prompt-based approaches and provide practical deployment guidelines for security
practitioners.

Keywords:	 Smart contracts, vulnerability detection, large language models, prompt engineering, DeFi
security

1. Introduction	

Smart contracts, self-executing programs deployed on blockchain platforms, manage over $200 billion in

total value locked across Decentralized Finance (DeFi) ecosystems as of 2024. However, their immutable
nature makes vulnerabilities catastrophic, with over $3.8 billion lost to smart contract exploits in 2022

alone [1]. High-profile incidents such as the $600 million Ronin Bridge hack and $320 million Wormhole
exploit highlight urgent needs for effective vulnerability detection methods.

Traditional vulnerability detection approaches face significant limitations. Static analysis tools like
Mythril [2], Slither [3], and Securify [4] suffer from high false positive rates (25–35%) and struggle with
complex economic attack vectors [5]. Manual security audits, while thorough, are expensive

($50,000–$200,000 per audit) and time-consuming, creating bottlenecks for protocol deployment.
Recent advances in Large Language Models (LLMs) have sparked interest in automated code analysis

Journal of Advances in Artificial Intelligence

1 Volume 4, Number 1, 2026

applications. SmartGuard demonstrates superior detection rates using Chain-of-Thought reasoning with
LLMs [6], while other work leverages fine-tuned LLMs on comprehensive datasets achieving improved

detection of logical errors [7]. However, these approaches require specialized training procedures, large
annotated datasets, and significant computational resources.

In contrast, prompt engineering offers a more accessible approach, leveraging existing capabilities of

pre-trained models without requiring custom training data or fine-tuning procedures. OpenAI's research
emphasizes the critical importance of well-structured prompts for optimal model performance [8], while

recent comparative analysis demonstrates that effective prompt engineering can significantly improve LLM
performance across diverse tasks [9]. Yet systematic evaluation of prompt engineering strategies for

security-critical applications remains unexplored.
This paper addresses this gap by presenting the first comprehensive empirical study of prompt

engineering for smart contract vulnerability detection using off-the-shelf LLMs. Our approach
fundamentally differs from existing work in several aspects: (1) no fine-tuning required, working with

pre-trained models out-of-the-box, (2) systematic prompt optimization studying how prompt
characteristics impact performance, (3) comprehensive multi-model comparison across five different
architectures, and (4) practical deployment focus emphasizing real-world considerations.

Main	Contributions:	

1. First systematic empirical analysis of prompt engineering strategies for smart contract vulnerability

detection
2. Discovery of optimal prompt characteristics showing 200–400-character length yields 100%

success versus 0% for complex prompts
3. Comprehensive multi-model performance evaluation revealing dramatic architectural differences

4. Establishment of baseline performance metrics for prompt-based approaches
5. Identification of vulnerability-specific detection strategies and practical deployment guidelines
6. Open-source release of experimental framework and datasets for reproducible research

2. Background	and	Prior	Work	in	Smart	Contract	Vulnerability	Detection	

2.1. Traditional	Smart	Contract	Security	Analysis	

Static analysis has dominated smart contract security research. Mythril [2] employs symbolic execution

and SMT solving to detect common vulnerabilities, while Slither [3] provides a comprehensive static
analysis framework supporting over 70 vulnerability detectors. Securify [4] introduces a security

specification language for expressing vulnerability patterns. However, empirical studies reveal these tools
suffer from high false positive rates (25–35%) and limited coverage of complex economic attacks [5].

Dynamic analysis approaches like Echidna [10] and Harvey [11] employ fuzzing techniques to trigger

vulnerabilities through test case generation. Formal verification methods [12, 13] provide mathematical
guarantees but require significant expertise and computational resources.

2.2. Machine	Learning	for	Vulnerability	Detection	

Early machine learning approaches focused on feature engineering from bytecode and source code

patterns [14, 15]. Deep learning models have shown promise in identifying vulnerability patterns [16, 17],
but require large labeled datasets and extensive training procedures.

Recent work has explored transformer-based approaches. CodeBERT [18] and similar pre-trained
models demonstrate effectiveness in code understanding tasks, but require fine-tuning for security-specific
applications. The most recent advancement leverages fine-tuned LLMs (Llama3-8B and CodeLlama-7B) on

comprehensive datasets of real-world DApp projects, addressing limitations of existing simplified

Journal of Advances in Artificial Intelligence

2 Volume 4, Number 1, 2026

benchmarks by including hard-to-detect logical errors [7].

2.3. LLM‐Based	Security	Analysis	

SmartGuard represents current state-of-the-art in LLM-based smart contract vulnerability detection,

utilizing Chain-of-Thought reasoning with external knowledge bases to achieve superior detection rates
through selection of relevant code examples and iterative reasoning processes [6]. However, this approach

requires complex prompt engineering with multiple reasoning steps and integration with external
knowledge systems.

Other recent work has explored LLMs for general code security analysis [19, 20], but focuses primarily on
traditional software rather than smart contract-specific vulnerabilities.

2.4. Prompt	Engineering	Research	

OpenAI's prompt engineering guidelines emphasize the importance of clear instructions, descriptive
adjectives for tone specification, and structured approaches for optimal model performance [8]. Recent

comparative analysis demonstrates that effective prompt engineering can significantly improve
performance in scientific text categorization tasks [9].

However, most prompt engineering research focuses on general-purpose tasks rather than
security-critical applications. The unique requirements of vulnerability detection including precision, recall,

explainability, and low false positive rates demand specialized prompt engineering strategies that have not
been systematically studied.

3. Methodology	and	Experimental	Design	

3.1. Research	Questions	

Our systematic study addresses the following research questions:
RQ1: How does prompt complexity affect LLM success rates in vulnerability detection tasks?

RQ2: What prompt characteristics optimize detection performance across different vulnerability types?
RQ3: How do different model architectures compare in vulnerability detection capabilities?

RQ4: What impact does few-shot learning have on detection performance across models?

3.2. Experimental	Setup	

We have selected five models representing different architectural approaches:

 CodeLlama (3.8 GB): Code-specific training

 CodeBERT (Microsoft): Pre-trained on code and natural language

 InCoder (Meta): Fill-in-the-middle architecture

 DeepSeek‐Coder: Chinese AI lab's code model

 StarCoder (BigCode): Community-driven open model

Infrastructure: MacBook Air with 16 GB RAM, Ollama local deployment for local models, Hugging Face
Inference API for CodeBERT and InCoder, timeout settings of 60–180 s, temperature 0.0–0.1 for
deterministic results.

To maintain responsible evaluation conditions and avoid unsafe or unstable model behaviour, the
experimental configuration follows secure AI lifecycle recommendations such as those outlined in

Microsoft’s Secure AI by Design framework [21].

3.3. Dataset	Construction	

Tier	1	‐	Simple	Validation: 3 minimal contracts (15–25 lines) with obvious vulnerabilities for baseline
validation.

Journal of Advances in Artificial Intelligence

3 Volume 4, Number 1, 2026

Tier	2	‐	Real	DeFi	Exploits: 6 contracts based on actual high-value exploits:

 Cream Finance ($130M): Oracle manipulation

 Harvest Finance ($24M): Flash loan + curve pool manipulation

 BNB Bridge ($586M): Signature verification bypass

 Euler Finance ($197M): Donation attack

 AMM DEX: Slippage and MEV vulnerabilities

 Governance DAO: Voting manipulation
Tier	 3	 ‐	 Comprehensive	Taxonomy: 21 vulnerability categories including reentrancy, MEV attacks,

oracle manipulation, flash loans, access control, integer issues, gas griefing, timestamp dependence,

business logic flaws, and governance attacks.

3.4. Prompt	Engineering	Strategies	

Strategy	1: Complex structured prompts (1500–2500 characters) with detailed formatting requirements

Strategy	2: Simple binary prompts (200–400 characters) with YES/NO questions
Strategy	3: Evidence-based prompts requiring code evidence and fixes

Strategy	4: Domain-specific prompts for different vulnerability categories
Strategy	5: Few-shot learning with 2–3 vulnerability examples

3.5. Evaluation	Metrics	

 Success	Rate: Analyses completed without timeout

 Recall	(Detection	Rate): TP / (TP + FN)

 Precision: TP / (TP + FP)

 F1‐Score: Harmonic mean of precision and recall

 Response	Time: Average analysis time per contract

4. Results	and	Analysis	

4.1. RQ1:	Impact	of	Prompt	complexity	

Fig. 1. Impact of prompt length on LLM success rate. The graph shows success rate declining from 100% at
250 characters to 0% at 2500 characters, with a critical threshold around 800 characters. Statistical

analysis: Pearson correlation r = −0.94 (p < 0.001), ANOVA F = 47.3 (p < 0.001).

Journal of Advances in Artificial Intelligence

4 Volume 4, Number 1, 2026

Our most significant finding reveals a strong inverse correlation between prompt complexity and success
rate as represented in Fig. 1. Complex structured prompts (1500+ characters) resulted in 100% timeout

failures, while simple prompts (200–400 characters) achieved perfect 100% success rates. The critical
threshold appears at approximately 800 characters.

4.2. RQ2	and	RQ3:	Experimental	Evolution	and	Multi‐model	Performance	

To answer RQ2, our investigation into automated vulnerability detection involved a progressive	series	
of	experimental	 iterations, each refining prompt design and model application. Table 1 summarizes the

evolution across key phases, highlighting success rates, detection performance, response times, and key
insights.

Table 1. Experiment Progression and Milestones
Phase	 Approach	 Success	 Time	 Milestone	

1. Initial Failure Complex prompts (1500+ chars) 0% 120 s Complete failure – timeouts
2. Breakthrough Simple prompts (200–400 chars) 100% 18.2 s First working detection!

3. Validation Simple prompts on test contracts 100% 18.2 s 100% detection (12/12)
4. Real DeFi Simple prompts on real exploits 100% 21.4 s Real exploits caught

5. Multi-Model Five models, zero-shot + few-shot 87% 12.5 s CodeLlama: 66.67% recall

Table 1 summarizes our research progression from initial failure to current multi-model evaluation,
illustrating the evolution of our approach:

 Iteration 1 began with complex structured prompts (1500+ characters), resulting in complete failure
(0% success) due to prompt complexity and timeouts (average response time 120.9 s).

 Iteration 2 marked a breakthrough: ultra-simple binary prompts (YES/NO, ~250 characters)
achieved full success in simple test cases.

 Iterations 3–4 maintained 100% success, validating the approach on minimal and real DeFi
contracts, though precision remained low.

 Iterations 5–6 expanded coverage to 21 vulnerability types, achieving moderate recall (45.8–75%)
and highlighting the challenge of scaling without loss in detection performance.

 Iterations 11–15 introduced multi-model deployment and best-practice optimization,	culminating in
iteration 15, where CodeLlama few-shot evaluation achieved 66.67% recall, representing the peak
detection performance across the study.

Key	 Insight: Simplicity in prompt design is critical for success, while iterative refinement and model
diversity are essential to handle real-world vulnerabilities.

Now to go about RQ3, Building on the iterative prompt improvements, we evaluated five state-of-the-art
LLMs (CodeLlama, DeepSeek-Coder, StarCoder, CodeBERT, InCoder) in zero-shot and few-shot settings.

Table 2. Multi-model Performance Comparison: Zero-Shot VS Few-Shot

Model	 Zero‐Shot	Recall	(%)	Few‐Shot	Recall	(%)	Improvement	Avg	Time	(s)	 Decision	
CodeLlama 47.37 66.67 +41% 31.8 BEST:	Highest	detection	

DeepSeek-Coder 21.05 33.33 +58% 6.1 BALANCED:	Fast	+	good	
StarCoder 15.79 16.67 +6% 11.4 ACCEPTABLE
CodeBERT 0 0 0 3.8 FAILED: 0% recall

InCoder 0 0 0 3.7 FAILED: 0% recall

Table 2 presents accuracy, precision, recall, F1-Score, and average response time per model.

 Critical	Finding: CodeBERT and InCoder consistently failed to detect any vulnerabilities (0% recall),
despite high accuracy (92–95%), highlighting the danger of over-reliance on accuracy alone in
security applications.

 CodeLlama	 Superiority: Few-shot learning elevated CodeLlama’s recall to 66.67%, a 41%

Journal of Advances in Artificial Intelligence

5 Volume 4, Number 1, 2026

improvement over zero-shot. This demonstrates that few-shot approaches amplify a model’s
inherent detection capabilities.

 DeepSeek‐Coder	 Balance: Although achieving a lower peak recall (33.33%), DeepSeek-Coder
maintains a superior speed-accuracy trade-off, processing inputs five times faster than CodeLlama.

 StarCoder: Minor improvement with few-shot (+6%), while CodeBERT/InCoder remain
architecturally incapable of detecting vulnerabilities.

	
Fig. 2. Multi-model recall comparison showing zero-shot (blue bars) versus few-shot (orange bars)

performance. CodeLlama shows 41% improvement (+19 percentage points), DeepSeek-Coder shows 58%
improvement (+12 percentage points), while CodeBERT and InCoder remain at 0%.

Fig. 2 visualizes the multi-model recall comparison, illustrating the gains of few-shot learning over
zero-shot for capable models, and emphasizing CodeLlama’s dominant performance.

4.3. Few‐Shot	Learning	Impact	

Few-shot learning consistently improves detection for models with baseline capability, confirming that

existing model competency is amplified rather than fundamentally created. Specific observations include:

 CodeLlama: +41% improvement (47.37% → 66.67% recall)

 DeepSeek-Coder: +58% improvement (21.05% → 33.33% recall)

 StarCoder: +6% improvement (15.79% → 16.67% recall)

 CodeBERT/InCoder: 0% improvement, demonstrating architectural limitations

This analysis underscores that few-shot learning can bridge performance gaps for competent models but
cannot compensate for fundamental architectural deficiencies.

Journal of Advances in Artificial Intelligence

6 Volume 4, Number 1, 2026

4.4. Vulnerability‐Specific	Performance	

Fig. 3 presents vulnerability detection rates per type for CodeLlama (few-shot). Detection performance is
categorized into three tiers:

 High	 Performance	 (>75%): Reentrancy (87.5%), Flash Loan (82.5%), Timestamp Dependence
(77.5%)

 Medium	Performance	(50–75%): MEV (75%), Oracle Manipulation (70%), Access Control (62.5%)

 Challenging	(<50%): Business Logic (37.5%), Governance Attacks (45%), Integer Issues (50%)
Interpretation: Detection is strongest for classical, well-defined vulnerabilities (e.g., Reentrancy),

moderate for complex manipulations, and weakest for abstract or business logic vulnerabilities, reflecting
inherent LLM limitations in reasoning across nuanced smart contract semantics.

Fig. 3. Detection rate by vulnerability type (CodeLlama few-shot). Green bars (>75%): Reentrancy (87.5%),

Flash Loan (82.5%), Timestamp (77.5%). Orange bars (50–75%): MEV (75%), Oracle (70%), Access Control
(62.5%). Red bars (<50%): Business Logic (37.5%), Governance (45%), Integer (50%).

5. Evaluation	 	

5.1. Key	Insights	

The	 Simplicity	 Paradox: Simple 200–400 character prompts achieve 100% success while elaborate
1500+ character prompts fail completely. This suggests current LLMs have limited capacity for processing

complex structured instructions in security contexts.
Architectural	Differences	Matter: The dramatic performance gap between CodeLlama (66.67% recall)

and CodeBERT (0% recall) demonstrates that architectural choices fundamentally determine security
reasoning capabilities.

Few‐Shot	 Learning	 Amplifies	 Existing	 Capabilities: Enhances models with baseline security
understanding but cannot rescue architecturally limited models, suggesting security reasoning is an
emergent capability requiring specific architectural properties.

These observed behaviours reinforce the broader principle that AI-assisted security workflows must be
evaluated through a secure-by-design lens, as emphasized in recent AI governance guidelines [21].

Journal of Advances in Artificial Intelligence

7 Volume 4, Number 1, 2026

5.2. Prompt	Engineering	Strategies	Explanation	of	Long	Prompt	Failure	

Context	 Window	 Saturation: CodeLlama's 4096-token context becomes saturated when complex
prompts (1500+ chars) combine with contract code (500–1000 tokens), leaving insufficient capacity for

reasoning.
Instruction	Complexity	Threshold: Complex prompts with multiple formatting requirements exceed

the model’s instruction-following capacity. Evidence shows sharp performance degradation:

 Simple prompts (200–400 chars): 100% success, 21.4 s

 Medium prompts (600–1000 chars): 85% success, 28.3 s

 Complex prompts (1500+ chars): 0% success, 120 s timeout
This suggests a fundamental architectural limitation, not merely a parameter tuning issue.

5.3. Prompt	Engineering	Strategies	Production	Readiness	

False positive rate: 34.3% across all models

False	Positive	Categories:

 Over-sensitive reentrancy detection: 42% of FPs

 Access control false alarms: 31% of FPs

 MEV phantom vulnerabilities: 23% of FPs

 Oracle manipulation overreach: 18% of FPs
Assessment: High recall (66.67% for CodeLlama) makes it effective for initial screening, but 34.3% false

positive rate necessitates expert review. Reduces manual review workload by ~40% while maintaining
security coverage.

5.4. .	Prompt	Engineering	Strategies	Limitations	

Internal	Validity: Single deployment environment (local Ollama), low temperature settings (0.0-0.1),

manual vulnerability labeling bias.
External	 Validity: Dataset may not capture full smart contract ecosystem diversity, evolving threat

landscape, Solidity version specificity (focused on ^0.8.0).

Construct	 Validity: Ground truth subjectivity, metric selection may not capture all security tool
effectiveness aspects.

These methodological constraints highlight the importance of embedding secure-by-design governance
principles into LLM-based security tooling, consistent with industry recommendations [21].

6. Conclusion	

This paper presents the first comprehensive empirical study of prompt engineering strategies for smart
contract vulnerability detection using off-the-shelf LLMs. Through systematic evaluation of five model

architectures across 21 vulnerability types and 15 experimental iterations, we establish key findings that
advance understanding of LLM capabilities for security applications.

Our primary discovery reveals a strong inverse correlation between prompt complexity and success rate:
simple prompts (200–400 characters) achieve 100% reliability while complex prompts (1500+ characters)
fail completely. Multi-model comparison reveals dramatic architectural differences, with CodeBERT and

InCoder showing 0% recall despite high accuracy, while CodeLlama achieves 66.67% recall with few-shot
learning.

Future work should explore multi-model ensemble approaches, Chain-of-Thought reasoning with simple
base prompts, vulnerability-specific prompt libraries, and integration with traditional static analysis tools

and should also consider operational safeguards and secure-by-design deployment principles to ensure

Journal of Advances in Artificial Intelligence

8 Volume 4, Number 1, 2026

reliable integration of LLM-based detection systems.

Conflict of Interest

The author declares no conflict of interest.

Acknowledgment

The author thanks the open-source smart contract security community for making vulnerability data
publicly available.

References	

[1] Chainalysis. (2023). The	2023	Crypto	Crime	Report. Chainalysis Inc.

[2] Mueller, B. (2018). Mythril:	 Security	Analysis	 Tool	 for	 Ethereum	 Smart	 Contracts [GitHub repository].
GitHub. Retrieved from https://github.com/ConsenSys/mythril

[3] Feist, J., Feist, F., Krupp, A., & Katz, D. (2019). Slither: A static analysis framework for smart contracts.
Proceedings	of	2019	IEEE/ACM	International	Workshop	on	Emerging	Trends	in	Software	Engineering	for	

Blockchain	(WETSEB) (pp. 8–15). IEEE.
[4] Tsankov, P., Dan, A., Drachsler-Cohen, D., Fisch, F., Gazzola, S., Bürgisser, E., & Vechev, M. (2018). Securify:

Practical security analysis of smart contracts. Proceedings	 of	 the	 2018	 ACM	 SIGSAC	 Conference	 on	
Computer	and	Communications	Security (pp. 67–82). ACM.

[5] Durieux, T., Naveh, E., & Feitelson, D. G. (2020). An empirical study on the effectiveness of static analysis
tools for security vulnerability detection in Java and C code. Empirical	 Software	 Engineering,	 25(6),
4052–4087.

[6] Ding, H., Liu, Y., Piao, X., Song, H., & Ji, Z. (2025). SmartGuard: An LLM-enhanced framework for smart
contract vulnerability detection. Expert	 Systems	 with	 Applications,	 266, 126479.

https://doi.org/10.1016/j.eswa.2025.126479
[7] Bu, J., Li, W., Li, Z., Zhang, Z., & Li, X. (2025). Enhancing smart contract vulnerability detection in DApps

leveraging fine-tuned LLM. arXiv preprint, arXiv:2504.05006.
[8] OpenAI. (2023). Prompt engineering guide. Retrieved from

https://platform.openai.com/docs/guides/prompt-engineering
[9] Maiti, A., Adewumi, S., Tikure, T. A., Wang, Z., Sengupta, N., Sukhanova, A., & Jana, A. (March, 2025).

Comparative analysis of OpenAI GPT-4o and DeepSeek R1 for scientific text categorization using
prompt engineering. Presented at the 2025 ASEE North Central Section Annual Conference, Huntington,
WV, United States. https://doi.org/10.18260/1-2--54654

[10] Grieco, G., Braun, L., & Braun, D. (2020). Echidna: Effective, usable, and fast fuzzing for smart contracts.
Proceedings	of	 the	29th	ACM	SIGSOFT	 International	Symposium	on	Software	Testing	and	Analysis (pp.

557–560). ACM.
[11] Wüstholz, M., & Christakis, C. (2020). Harvey: A greybox fuzzer for smart contracts. Proceedings	of	the	

28th	 ACM	 Joint	 Meeting	 on	 European	 Software	 Engineering	 Conference	 and	 Symposium	 on	 the	
Foundations	of	Software	Engineering (pp. 1398–1409). ACM.

[12] Bhargavan, K., Delignat-Lavaud, A., Fournet, C., & Médard, M. (2016). Formal verification of smart
contracts. Proceedings	 of	 the	 2016	 ACM	 Workshop	 on	 Programming	 Languages	 and	 Analysis	 for	

Security (pp. 91–96). ACM.
[13] Kalra, S., Goel, S., Govindarajan, M., & Kannan, S. P. (2018). Zeus: Analyzing safety of smart contracts.

Proceedings	of	the	Network	and	Distributed	System	Security	Symposium	(NDSS).

[14] Momeni, M., Gharaee, M., & Rezazadeh, M. (2019). Machine learning model for smart contracts security

Journal of Advances in Artificial Intelligence

9 Volume 4, Number 1, 2026

analysis. Proceedings	 of	 2019	 International	 Congress	 on	 Technology,	 Communication	 and	 Knowledge	
(ICTCK) (pp. 1–6). IEEE.

[15] Qian, Z., Zhao, Y., & Li, X. (2020). Towards automated reentrancy detection for smart contracts based on
sequential models. IEEE	Access,	8, 96685–96695.

[16] Zhuang, L., Liang, Z., & Cui, B. (2020). Smart contract vulnerability detection using graph neural

network. Proceedings	of	 the	Twenty‐Ninth	 International	 Joint	Conference	on	Artificial	 Intelligence (pp.
3283–3290).

[17] Wang, W., Zhong, Y., Jiang, H., & Zheng, F. (2021). ContractWard: Automated vulnerability detection
models for Ethereum smart contracts. IEEE	 Transactions	 on	Network	 Science	 and	Engineering,	 8(2),

1133–1144.
[18] Feng, Z., Jiang, H., Huang, Z., & Zhang, X. (2020). CodeBERT: A pre-trained model for programming and

natural languages. Proceedings	 of	 Findings	 of	 the	 Association	 for	 Computational	 Linguistics:	 EMNLP	
2020 (pp. 1536–1547). Association for Computational Linguistics.

[19] Pearce, H., Rodrigues, D., & Pereira, F. (2022). Asleep at the keyboard? Assessing the security of GitHub
Copilot’s code contributions. Proceedings	 of	 2022	 IEEE	 Symposium	 on	 Security	 and	 Privacy	 (SP) (pp.
754–768). IEEE.

[20] Microsoft. (September 30, 2025). Secure	AI	by	Design	Series:	Embedding	Security	and	Governance	Across	
the	 AI	 Lifecycle. Microsoft Defender for Cloud Blog. Retrieved from

https://techcommunity.microsoft.com/blog/microsoftdefendercloudblog/secure-ai-by-design-series-e
mbedding-security-and-governance-across-the-ai-lifec/4457200

[21] Microsoft. (2023). Azure OpenAI Service documentation. Retrieved from
https://learn.microsoft.com/azure/ai-services/openai/

Copyright © 2026 by the authors. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited (CC BY 4.0).

Journal of Advances in Artificial Intelligence

10 Volume 4, Number 1, 2026

	56-JAAI-429

