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Abstract: Smart contract vulnerabilities have resulted in billions of dollars in losses across Decentralized
Finance (DeFi) ecosystems. While recent work explores fine-tuned Large Language Models (LLMs) for
vulnerability detection, little research systematically examines prompt engineering strategies with
pre-trained models. This paper presents the first comprehensive empirical study comparing five
code-understanding LLMs (CodeLlama, CodeBERT, InCoder, DeepSeek-Coder, StarCoder) for smart contract
security analysis without fine-tuning. Through 15 experimental iterations testing different prompting
approaches across 21 vulnerability types using real DeFi exploit patterns, we discover a strong inverse
correlation between prompt complexity and detection success: simple prompts (200-400 characters)
achieve 100% response reliability while complex structured prompts (1500+ characters) result in
complete failure. Our multi-model comparison reveals dramatic architectural differences: CodeBERT and
InCoder achieve 92% accuracy but 0% recall (classifying everything as safe), while CodeLlama
demonstrates superior detection with 66.67% recall using few-shot learning. DeepSeek-Coder offers
optimal balance with 33.33% recall at 6.1 s inference time. These findings establish baseline performance
metrics for prompt-based approaches and provide practical deployment guidelines for security
practitioners.

Keywords: Smart contracts, vulnerability detection, large language models, prompt engineering, DeFi
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1. Introduction

Smart contracts, self-executing programs deployed on blockchain platforms, manage over $200 billion in
total value locked across Decentralized Finance (DeFi) ecosystems as of 2024. However, their immutable
nature makes vulnerabilities catastrophic, with over $3.8 billion lost to smart contract exploits in 2022
alone [1]. High-profile incidents such as the $600 million Ronin Bridge hack and $320 million Wormhole
exploit highlight urgent needs for effective vulnerability detection methods.

Traditional vulnerability detection approaches face significant limitations. Static analysis tools like
Mythril [2], Slither [3], and Securify [4] suffer from high false positive rates (25-35%) and struggle with
complex economic attack vectors [5]. Manual security audits, while thorough, are expensive
($50,000-%$200,000 per audit) and time-consuming, creating bottlenecks for protocol deployment.

Recent advances in Large Language Models (LLMs) have sparked interest in automated code analysis
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applications. SmartGuard demonstrates superior detection rates using Chain-of-Thought reasoning with
LLMs [6], while other work leverages fine-tuned LLMs on comprehensive datasets achieving improved
detection of logical errors [7]. However, these approaches require specialized training procedures, large
annotated datasets, and significant computational resources.

In contrast, prompt engineering offers a more accessible approach, leveraging existing capabilities of
pre-trained models without requiring custom training data or fine-tuning procedures. OpenAl's research
emphasizes the critical importance of well-structured prompts for optimal model performance [8], while
recent comparative analysis demonstrates that effective prompt engineering can significantly improve LLM
performance across diverse tasks [9]. Yet systematic evaluation of prompt engineering strategies for
security-critical applications remains unexplored.

This paper addresses this gap by presenting the first comprehensive empirical study of prompt
engineering for smart contract vulnerability detection using off-the-shelf LLMs. Our approach
fundamentally differs from existing work in several aspects: (1) no fine-tuning required, working with
pre-trained models out-of-the-box, (2) systematic prompt optimization studying how prompt
characteristics impact performance, (3) comprehensive multi-model comparison across five different
architectures, and (4) practical deployment focus emphasizing real-world considerations.

Main Contributions:

1. First systematic empirical analysis of prompt engineering strategies for smart contract vulnerability
detection

2. Discovery of optimal prompt characteristics showing 200-400-character length yields 100%

success versus 0% for complex prompts

Comprehensive multi-model performance evaluation revealing dramatic architectural differences

Establishment of baseline performance metrics for prompt-based approaches

Identification of vulnerability-specific detection strategies and practical deployment guidelines

o 1o W

Open-source release of experimental framework and datasets for reproducible research

2. Background and Prior Work in Smart Contract Vulnerability Detection

2.1.Traditional Smart Contract Security Analysis

Static analysis has dominated smart contract security research. Mythril [2] employs symbolic execution
and SMT solving to detect common vulnerabilities, while Slither [3] provides a comprehensive static
analysis framework supporting over 70 vulnerability detectors. Securify [4] introduces a security
specification language for expressing vulnerability patterns. However, empirical studies reveal these tools
suffer from high false positive rates (25-35%) and limited coverage of complex economic attacks [5].

Dynamic analysis approaches like Echidna [10] and Harvey [11] employ fuzzing techniques to trigger
vulnerabilities through test case generation. Formal verification methods [12, 13] provide mathematical
guarantees but require significant expertise and computational resources.

2.2.Machine Learning for Vulnerability Detection

Early machine learning approaches focused on feature engineering from bytecode and source code
patterns [14, 15]. Deep learning models have shown promise in identifying vulnerability patterns [16, 17],
but require large labeled datasets and extensive training procedures.

Recent work has explored transformer-based approaches. CodeBERT [18] and similar pre-trained
models demonstrate effectiveness in code understanding tasks, but require fine-tuning for security-specific
applications. The most recent advancement leverages fine-tuned LLMs (Llama3-8B and CodeLlama-7B) on
comprehensive datasets of real-world DApp projects, addressing limitations of existing simplified
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benchmarks by including hard-to-detect logical errors [7].

2.3.LLM-Based Security Analysis

SmartGuard represents current state-of-the-art in LLM-based smart contract vulnerability detection,
utilizing Chain-of-Thought reasoning with external knowledge bases to achieve superior detection rates
through selection of relevant code examples and iterative reasoning processes [6]. However, this approach
requires complex prompt engineering with multiple reasoning steps and integration with external
knowledge systems.

Other recent work has explored LLMs for general code security analysis [19, 20], but focuses primarily on
traditional software rather than smart contract-specific vulnerabilities.

2.4.Prompt Engineering Research

OpenAl's prompt engineering guidelines emphasize the importance of clear instructions, descriptive
adjectives for tone specification, and structured approaches for optimal model performance [8]. Recent
comparative analysis demonstrates that effective prompt engineering can significantly improve
performance in scientific text categorization tasks [9].

However, most prompt engineering research focuses on general-purpose tasks rather than
security-critical applications. The unique requirements of vulnerability detection including precision, recall,
explainability, and low false positive rates demand specialized prompt engineering strategies that have not
been systematically studied.

3. Methodology and Experimental Design

3.1.Research Questions

Our systematic study addresses the following research questions:

RQ1: How does prompt complexity affect LLM success rates in vulnerability detection tasks?

RQ2: What prompt characteristics optimize detection performance across different vulnerability types?
RQ3: How do different model architectures compare in vulnerability detection capabilities?

RQ4: What impact does few-shot learning have on detection performance across models?

3.2.Experimental Setup

We have selected five models representing different architectural approaches:

CodeLlama (3.8 GB): Code-specific training

CodeBERT (Microsoft): Pre-trained on code and natural language
InCoder (Meta): Fill-in-the-middle architecture
DeepSeek-Coder: Chinese Al lab's code model

StarCoder (BigCode): Community-driven open model

Infrastructure: MacBook Air with 16 GB RAM, Ollama local deployment for local models, Hugging Face
Inference APl for CodeBERT and InCoder, timeout settings of 60-180 s, temperature 0.0-0.1 for
deterministic results.

To maintain responsible evaluation conditions and avoid unsafe or unstable model behaviour, the
experimental configuration follows secure Al lifecycle recommendations such as those outlined in
Microsoft’s Secure Al by Design framework [21].

3.3.Dataset Construction

Tier 1 - Simple Validation: 3 minimal contracts (15-25 lines) with obvious vulnerabilities for baseline
validation.
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Tier 2 - Real DeFi Exploits: 6 contracts based on actual high-value exploits:

¢ Cream Finance ($130M): Oracle manipulation

Harvest Finance ($24M): Flash loan + curve pool manipulation

BNB Bridge ($586M): Signature verification bypass
Euler Finance ($197M): Donation attack

AMM DEX: Slippage and MEV vulnerabilities

e Governance DAO: Voting manipulation

Tier 3 - Comprehensive Taxonomy: 21 vulnerability categories including reentrancy, MEV attacks,
oracle manipulation, flash loans, access control, integer issues, gas griefing, timestamp dependence,
business logic flaws, and governance attacks.

3.4.Prompt Engineering Strategies

Strategy 1: Complex structured prompts (1500-2500 characters) with detailed formatting requirements
Strategy 2: Simple binary prompts (200-400 characters) with YES/NO questions

Strategy 3: Evidence-based prompts requiring code evidence and fixes

Strategy 4: Domain-specific prompts for different vulnerability categories

Strategy 5: Few-shot learning with 2-3 vulnerability examples

3.5.Evaluation Metrics

Success Rate: Analyses completed without timeout
Recall (Detection Rate): TP / (TP + FN)
Precision: TP / (TP + FP)

F1-Score: Harmonic mean of precision and recall

e Response Time: Average analysis time per contract

4. Results and Analysis
4.1.RQ1: Impact of Prompt complexity

Impact of Prompt Length on LLM Success Rate
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Fig. 1. Impact of prompt length on LLM success rate. The graph shows success rate declining from 100% at
250 characters to 0% at 2500 characters, with a critical threshold around 800 characters. Statistical
analysis: Pearson correlation r =-0.94 (p < 0.001), ANOVA F = 47.3 (p < 0.001).
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Our most significant finding reveals a strong inverse correlation between prompt complexity and success
rate as represented in Fig. 1. Complex structured prompts (1500+ characters) resulted in 100% timeout
failures, while simple prompts (200-400 characters) achieved perfect 100% success rates. The critical
threshold appears at approximately 800 characters.

4.2.RQ2 and RQ3: Experimental Evolution and Multi-model Performance

To answer RQ2, our investigation into automated vulnerability detection involved a progressive series
of experimental iterations, each refining prompt design and model application. Table 1 summarizes the
evolution across key phases, highlighting success rates, detection performance, response times, and key

insights.
Table 1. Experiment Progression and Milestones
Phase Approach Success Time Milestone
1. Initial Failure =~ Complex prompts (1500+ chars) 0% 120s Complete failure - timeouts

2. Breakthrough  Simple prompts (200-400 chars) 100%  18.2s First working detection!
3. Validation Simple prompts on test contracts 100% 18.2s 100% detection (12/12)
4. Real DeFi Simple prompts on real exploits 100% 21.4s Real exploits caught

5. Multi-Model  Five models, zero-shot + few-shot 87% 12.5s CodeLlama: 66.67% recall

Table 1 summarizes our research progression from initial failure to current multi-model evaluation,
illustrating the evolution of our approach:

e Iteration 1 began with complex structured prompts (1500+ characters), resulting in complete failure
(0% success) due to prompt complexity and timeouts (average response time 120.9 s).

e Iteration 2 marked a breakthrough: ultra-simple binary prompts (YES/NO, ~250 characters)
achieved full success in simple test cases.

e [terations 3-4 maintained 100% success, validating the approach on minimal and real DeFi
contracts, though precision remained low.

e Iterations 5-6 expanded coverage to 21 vulnerability types, achieving moderate recall (45.8-75%)
and highlighting the challenge of scaling without loss in detection performance.

e [terations 11-15 introduced multi-model deployment and best-practice optimization, culminating in
iteration 15, where CodeLlama few-shot evaluation achieved 66.67% recall, representing the peak
detection performance across the study.

Key Insight: Simplicity in prompt design is critical for success, while iterative refinement and model
diversity are essential to handle real-world vulnerabilities.

Now to go about RQ3, Building on the iterative prompt improvements, we evaluated five state-of-the-art
LLMs (CodeLlama, DeepSeek-Coder, StarCoder, CodeBERT, InCoder) in zero-shot and few-shot settings.

Table 2. Multi-model Performance Comparison: Zero-Shot VS Few-Shot

Model Zero-Shot Recall (%) Few-Shot Recall (%) Improvement Avg Time (s) Decision
CodeLlama 47.37 66.67 +41% 31.8 BEST: Highest detection
DeepSeek-Coder 21.05 33.33 +58% 6.1 BALANCED: Fast + good
StarCoder 15.79 16.67 +6% 11.4 ACCEPTABLE
CodeBERT 0 0 0 3.8 FAILED: 0% recall
InCoder 0 0 0 3.7 FAILED: 0% recall

Table 2 presents accuracy, precision, recall, F1-Score, and average response time per model.

e Critical Finding: CodeBERT and InCoder consistently failed to detect any vulnerabilities (0% recall),
despite high accuracy (92-95%), highlighting the danger of over-reliance on accuracy alone in
security applications.

e CodeLlama Superiority: Few-shot learning elevated CodeLllama’s recall to 66.67%, a 41%

5 Volume 4, Number 1, 2026



improvement over zero-shot. This demonstrates that few-shot approaches amplify a model’s
inherent detection capabilities.

e DeepSeek-Coder Balance: Although achieving a lower peak recall (33.33%), DeepSeek-Coder
maintains a superior speed-accuracy trade-off, processing inputs five times faster than CodeLlama.

e StarCoder: Minor improvement with few-shot (+6%), while CodeBERT/InCoder remain
architecturally incapable of detecting vulnerabilities.

Multi-Model Performance: Zero-Shot vs Few-Shot Learning
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Fig. 2. Multi-model recall comparison showing zero-shot (blue bars) versus few-shot (orange bars)
performance. CodeLlama shows 41% improvement (+19 percentage points), DeepSeek-Coder shows 58%
improvement (+12 percentage points), while CodeBERT and InCoder remain at 0%.

Fig. 2 visualizes the multi-model recall comparison, illustrating the gains of few-shot learning over
zero-shot for capable models, and emphasizing CodeLlama’s dominant performance.

4.3.Few-Shot Learning Impact

Few-shot learning consistently improves detection for models with baseline capability, confirming that
existing model competency is amplified rather than fundamentally created. Specific observations include:
e CodeLlama: +41% improvement (47.37% — 66.67% recall)
e DeepSeek-Coder: +58% improvement (21.05% — 33.33% recall)
e StarCoder: +6% improvement (15.79% — 16.67% recall)
e CodeBERT/InCoder: 0% improvement, demonstrating architectural limitations
This analysis underscores that few-shot learning can bridge performance gaps for competent models but
cannot compensate for fundamental architectural deficiencies.
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4.4.Vulnerability-Specific Performance

Fig. 3 presents vulnerability detection rates per type for CodeLlama (few-shot). Detection performance is
categorized into three tiers:
e High Performance (>75%): Reentrancy (87.5%), Flash Loan (82.5%), Timestamp Dependence
(77.5%)
e Medium Performance (50-75%): MEV (75%), Oracle Manipulation (70%), Access Control (62.5%)
¢ Challenging (<50%): Business Logic (37.5%), Governance Attacks (45%), Integer Issues (50%)
Interpretation: Detection is strongest for classical, well-defined vulnerabilities (e.g, Reentrancy),
moderate for complex manipulations, and weakest for abstract or business logic vulnerabilities, reflecting
inherent LLM limitations in reasoning across nuanced smart contract semantics.

Vulnerability Detection Performance by Type (CodeLlama Few-Shot)
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Integer 50.0%
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Fig. 3. Detection rate by vulnerability type (CodeLlama few-shot). Green bars (>75%): Reentrancy (87.5%),
Flash Loan (82.5%), Timestamp (77.5%). Orange bars (50-75%): MEV (75%), Oracle (70%), Access Control
(62.5%). Red bars (<50%): Business Logic (37.5%), Governance (45%), Integer (50%).

5. Evaluation

5.1.Key Insights

The Simplicity Paradox: Simple 200-400 character prompts achieve 100% success while elaborate
1500+ character prompts fail completely. This suggests current LLMs have limited capacity for processing
complex structured instructions in security contexts.

Architectural Differences Matter: The dramatic performance gap between CodeLlama (66.67% recall)
and CodeBERT (0% recall) demonstrates that architectural choices fundamentally determine security
reasoning capabilities.

Few-Shot Learning Amplifies Existing Capabilities: Enhances models with baseline security
understanding but cannot rescue architecturally limited models, suggesting security reasoning is an
emergent capability requiring specific architectural properties.

These observed behaviours reinforce the broader principle that Al-assisted security workflows must be
evaluated through a secure-by-design lens, as emphasized in recent Al governance guidelines [21].
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5.2.Prompt Engineering Strategies Explanation of Long Prompt Failure

Context Window Saturation: CodeLlama's 4096-token context becomes saturated when complex
prompts (1500+ chars) combine with contract code (500-1000 tokens), leaving insufficient capacity for
reasoning.

Instruction Complexity Threshold: Complex prompts with multiple formatting requirements exceed
the model’s instruction-following capacity. Evidence shows sharp performance degradation:

e Simple prompts (200-400 chars): 100% success, 21.4 s
e Medium prompts (600-1000 chars): 85% success, 28.3 s
e Complex prompts (1500+ chars): 0% success, 120 s timeout
This suggests a fundamental architectural limitation, not merely a parameter tuning issue.

5.3.Prompt Engineering Strategies Production Readiness
False positive rate: 34.3% across all models
False Positive Categories:
e Over-sensitive reentrancy detection: 42% of FPs
e Access control false alarms: 31% of FPs
MEV phantom vulnerabilities: 23% of FPs

e Oracle manipulation overreach: 18% of FPs

Assessment: High recall (66.67% for CodeLlama) makes it effective for initial screening, but 34.3% false
positive rate necessitates expert review. Reduces manual review workload by ~40% while maintaining
security coverage.

5.4.. Prompt Engineering Strategies Limitations

Internal Validity: Single deployment environment (local Ollama), low temperature settings (0.0-0.1),
manual vulnerability labeling bias.

External Validity: Dataset may not capture full smart contract ecosystem diversity, evolving threat
landscape, Solidity version specificity (focused on ~0.8.0).

Construct Validity: Ground truth subjectivity, metric selection may not capture all security tool
effectiveness aspects.

These methodological constraints highlight the importance of embedding secure-by-design governance
principles into LLM-based security tooling, consistent with industry recommendations [21].

6. Conclusion

This paper presents the first comprehensive empirical study of prompt engineering strategies for smart
contract vulnerability detection using off-the-shelf LLMs. Through systematic evaluation of five model
architectures across 21 vulnerability types and 15 experimental iterations, we establish key findings that
advance understanding of LLM capabilities for security applications.

Our primary discovery reveals a strong inverse correlation between prompt complexity and success rate:
simple prompts (200-400 characters) achieve 100% reliability while complex prompts (1500+ characters)
fail completely. Multi-model comparison reveals dramatic architectural differences, with CodeBERT and
InCoder showing 0% recall despite high accuracy, while CodeLlama achieves 66.67% recall with few-shot
learning.

Future work should explore multi-model ensemble approaches, Chain-of-Thought reasoning with simple
base prompts, vulnerability-specific prompt libraries, and integration with traditional static analysis tools
and should also consider operational safeguards and secure-by-design deployment principles to ensure
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reliable integration of LLM-based detection systems.
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