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Abstract:	Smart contract vulnerabilities have resulted in billions of dollars in losses across Decentralized 
Finance (DeFi) ecosystems. While recent work explores fine-tuned Large Language Models (LLMs) for 
vulnerability detection, little research systematically examines prompt engineering strategies with 
pre-trained models. This paper presents the first comprehensive empirical study comparing five 
code-understanding LLMs (CodeLlama, CodeBERT, InCoder, DeepSeek-Coder, StarCoder) for smart contract 
security analysis without fine-tuning. Through 15 experimental iterations testing different prompting 
approaches across 21 vulnerability types using real DeFi exploit patterns, we discover a strong inverse 
correlation between prompt complexity and detection success: simple prompts (200–400 characters) 
achieve 100% response reliability while complex structured prompts (1500+ characters) result in 
complete failure. Our multi-model comparison reveals dramatic architectural differences: CodeBERT and 
InCoder achieve 92% accuracy but 0% recall (classifying everything as safe), while CodeLlama 
demonstrates superior detection with 66.67% recall using few-shot learning. DeepSeek-Coder offers 
optimal balance with 33.33% recall at 6.1 s inference time. These findings establish baseline performance 
metrics for prompt-based approaches and provide practical deployment guidelines for security 
practitioners. 
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1. Introduction	

Smart contracts, self-executing programs deployed on blockchain platforms, manage over $200 billion in 

total value locked across Decentralized Finance (DeFi) ecosystems as of 2024. However, their immutable 
nature makes vulnerabilities catastrophic, with over $3.8 billion lost to smart contract exploits in 2022 

alone [1]. High-profile incidents such as the $600 million Ronin Bridge hack and $320 million Wormhole 
exploit highlight urgent needs for effective vulnerability detection methods. 

Traditional vulnerability detection approaches face significant limitations. Static analysis tools like 
Mythril [2], Slither [3], and Securify [4] suffer from high false positive rates (25–35%) and struggle with 
complex economic attack vectors [5]. Manual security audits, while thorough, are expensive 

($50,000–$200,000 per audit) and time-consuming, creating bottlenecks for protocol deployment. 
Recent advances in Large Language Models (LLMs) have sparked interest in automated code analysis 
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applications. SmartGuard demonstrates superior detection rates using Chain-of-Thought reasoning with 
LLMs [6], while other work leverages fine-tuned LLMs on comprehensive datasets achieving improved 

detection of logical errors [7]. However, these approaches require specialized training procedures, large 
annotated datasets, and significant computational resources. 

In contrast, prompt engineering offers a more accessible approach, leveraging existing capabilities of 

pre-trained models without requiring custom training data or fine-tuning procedures. OpenAI's research 
emphasizes the critical importance of well-structured prompts for optimal model performance [8], while 

recent comparative analysis demonstrates that effective prompt engineering can significantly improve LLM 
performance across diverse tasks [9]. Yet systematic evaluation of prompt engineering strategies for 

security-critical applications remains unexplored. 
This paper addresses this gap by presenting the first comprehensive empirical study of prompt 

engineering for smart contract vulnerability detection using off-the-shelf LLMs. Our approach 
fundamentally differs from existing work in several aspects: (1) no fine-tuning required, working with 

pre-trained models out-of-the-box, (2) systematic prompt optimization studying how prompt 
characteristics impact performance, (3) comprehensive multi-model comparison across five different 
architectures, and (4) practical deployment focus emphasizing real-world considerations. 

Main	Contributions:	

1. First systematic empirical analysis of prompt engineering strategies for smart contract vulnerability 

detection 
2. Discovery of optimal prompt characteristics showing 200–400-character length yields 100% 

success versus 0% for complex prompts 
3. Comprehensive multi-model performance evaluation revealing dramatic architectural differences 

4. Establishment of baseline performance metrics for prompt-based approaches 
5. Identification of vulnerability-specific detection strategies and practical deployment guidelines 
6. Open-source release of experimental framework and datasets for reproducible research 

2. Background	and	Prior	Work	in	Smart	Contract	Vulnerability	Detection	

2.1. Traditional	Smart	Contract	Security	Analysis	

Static analysis has dominated smart contract security research. Mythril [2] employs symbolic execution 

and SMT solving to detect common vulnerabilities, while Slither [3] provides a comprehensive static 
analysis framework supporting over 70 vulnerability detectors. Securify [4] introduces a security 

specification language for expressing vulnerability patterns. However, empirical studies reveal these tools 
suffer from high false positive rates (25–35%) and limited coverage of complex economic attacks [5]. 

Dynamic analysis approaches like Echidna [10] and Harvey [11] employ fuzzing techniques to trigger 

vulnerabilities through test case generation. Formal verification methods [12, 13] provide mathematical 
guarantees but require significant expertise and computational resources. 

2.2. Machine	Learning	for	Vulnerability	Detection	

Early machine learning approaches focused on feature engineering from bytecode and source code 

patterns [14, 15]. Deep learning models have shown promise in identifying vulnerability patterns [16, 17], 
but require large labeled datasets and extensive training procedures. 

Recent work has explored transformer-based approaches. CodeBERT [18] and similar pre-trained 
models demonstrate effectiveness in code understanding tasks, but require fine-tuning for security-specific 
applications. The most recent advancement leverages fine-tuned LLMs (Llama3-8B and CodeLlama-7B) on 

comprehensive datasets of real-world DApp projects, addressing limitations of existing simplified 
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benchmarks by including hard-to-detect logical errors [7]. 

2.3. LLM‐Based	Security	Analysis	

SmartGuard represents current state-of-the-art in LLM-based smart contract vulnerability detection, 

utilizing Chain-of-Thought reasoning with external knowledge bases to achieve superior detection rates 
through selection of relevant code examples and iterative reasoning processes [6]. However, this approach 

requires complex prompt engineering with multiple reasoning steps and integration with external 
knowledge systems. 

Other recent work has explored LLMs for general code security analysis [19, 20], but focuses primarily on 
traditional software rather than smart contract-specific vulnerabilities. 

2.4. Prompt	Engineering	Research	

OpenAI's prompt engineering guidelines emphasize the importance of clear instructions, descriptive 
adjectives for tone specification, and structured approaches for optimal model performance [8]. Recent 

comparative analysis demonstrates that effective prompt engineering can significantly improve 
performance in scientific text categorization tasks [9]. 

However, most prompt engineering research focuses on general-purpose tasks rather than 
security-critical applications. The unique requirements of vulnerability detection including precision, recall, 

explainability, and low false positive rates demand specialized prompt engineering strategies that have not 
been systematically studied. 

3. Methodology	and	Experimental	Design	

3.1. Research	Questions	

Our systematic study addresses the following research questions: 
RQ1: How does prompt complexity affect LLM success rates in vulnerability detection tasks? 

RQ2: What prompt characteristics optimize detection performance across different vulnerability types? 
RQ3: How do different model architectures compare in vulnerability detection capabilities? 

RQ4: What impact does few-shot learning have on detection performance across models? 

3.2. Experimental	Setup	

We have selected five models representing different architectural approaches: 

 CodeLlama (3.8 GB): Code-specific training 

 CodeBERT (Microsoft): Pre-trained on code and natural language 

 InCoder (Meta): Fill-in-the-middle architecture 

 DeepSeek‐Coder: Chinese AI lab's code model 

 StarCoder (BigCode): Community-driven open model 

Infrastructure: MacBook Air with 16 GB RAM, Ollama local deployment for local models, Hugging Face 
Inference API for CodeBERT and InCoder, timeout settings of 60–180 s, temperature 0.0–0.1 for 
deterministic results. 

To maintain responsible evaluation conditions and avoid unsafe or unstable model behaviour, the 
experimental configuration follows secure AI lifecycle recommendations such as those outlined in 

Microsoft’s Secure AI by Design framework [21]. 

3.3. Dataset	Construction	

Tier	1	‐	Simple	Validation: 3 minimal contracts (15–25 lines) with obvious vulnerabilities for baseline 
validation. 
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Tier	2	‐	Real	DeFi	Exploits: 6 contracts based on actual high-value exploits: 

 Cream Finance ($130M): Oracle manipulation 

 Harvest Finance ($24M): Flash loan + curve pool manipulation 

 BNB Bridge ($586M): Signature verification bypass 

 Euler Finance ($197M): Donation attack 

 AMM DEX: Slippage and MEV vulnerabilities 

 Governance DAO: Voting manipulation 
Tier	 3	 ‐	 Comprehensive	Taxonomy: 21 vulnerability categories including reentrancy, MEV attacks, 

oracle manipulation, flash loans, access control, integer issues, gas griefing, timestamp dependence, 

business logic flaws, and governance attacks. 

3.4. Prompt	Engineering	Strategies	

Strategy	1: Complex structured prompts (1500–2500 characters) with detailed formatting requirements 

Strategy	2: Simple binary prompts (200–400 characters) with YES/NO questions 
Strategy	3: Evidence-based prompts requiring code evidence and fixes 

Strategy	4: Domain-specific prompts for different vulnerability categories 
Strategy	5: Few-shot learning with 2–3 vulnerability examples 

3.5. Evaluation	Metrics	

 Success	Rate: Analyses completed without timeout 

 Recall	(Detection	Rate): TP / (TP + FN) 

 Precision: TP / (TP + FP) 

 F1‐Score: Harmonic mean of precision and recall 

 Response	Time: Average analysis time per contract 

4. Results	and	Analysis	

4.1. RQ1:	Impact	of	Prompt	complexity	

 
Fig. 1. Impact of prompt length on LLM success rate. The graph shows success rate declining from 100% at 
250 characters to 0% at 2500 characters, with a critical threshold around 800 characters. Statistical 

analysis: Pearson correlation r = −0.94 (p < 0.001), ANOVA F = 47.3 (p < 0.001). 
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Our most significant finding reveals a strong inverse correlation between prompt complexity and success 
rate as represented in Fig. 1. Complex structured prompts (1500+ characters) resulted in 100% timeout 

failures, while simple prompts (200–400 characters) achieved perfect 100% success rates. The critical 
threshold appears at approximately 800 characters. 

4.2. RQ2	and	RQ3:	Experimental	Evolution	and	Multi‐model	Performance	

To answer RQ2, our investigation into automated vulnerability detection involved a progressive	series	
of	experimental	 iterations, each refining prompt design and model application. Table 1 summarizes the 

evolution across key phases, highlighting success rates, detection performance, response times, and key 
insights. 

Table 1. Experiment Progression and Milestones 
Phase	 Approach	 Success	 Time	 Milestone	

1. Initial Failure Complex prompts (1500+ chars) 0% 120 s Complete failure – timeouts 
2. Breakthrough Simple prompts (200–400 chars) 100% 18.2 s First working detection! 

3. Validation Simple prompts on test contracts 100% 18.2 s 100% detection (12/12) 
4. Real DeFi Simple prompts on real exploits 100% 21.4 s Real exploits caught 

5. Multi-Model Five models, zero-shot + few-shot 87% 12.5 s CodeLlama: 66.67% recall 
 

Table 1 summarizes our research progression from initial failure to current multi-model evaluation, 
illustrating the evolution of our approach: 

 Iteration 1 began with complex structured prompts (1500+ characters), resulting in complete failure 
(0% success) due to prompt complexity and timeouts (average response time 120.9 s). 

 Iteration 2 marked a breakthrough: ultra-simple binary prompts (YES/NO, ~250 characters) 
achieved full success in simple test cases. 

 Iterations 3–4 maintained 100% success, validating the approach on minimal and real DeFi 
contracts, though precision remained low. 

 Iterations 5–6 expanded coverage to 21 vulnerability types, achieving moderate recall (45.8–75%) 
and highlighting the challenge of scaling without loss in detection performance. 

 Iterations 11–15 introduced multi-model deployment and best-practice optimization,	culminating in 
iteration 15, where CodeLlama few-shot evaluation achieved 66.67% recall, representing the peak 
detection performance across the study. 

Key	 Insight: Simplicity in prompt design is critical for success, while iterative refinement and model 
diversity are essential to handle real-world vulnerabilities. 

Now to go about RQ3, Building on the iterative prompt improvements, we evaluated five state-of-the-art 
LLMs (CodeLlama, DeepSeek-Coder, StarCoder, CodeBERT, InCoder) in zero-shot and few-shot settings. 

 
Table 2. Multi-model Performance Comparison: Zero-Shot VS Few-Shot 

Model	 Zero‐Shot	Recall	(%)	Few‐Shot	Recall	(%)	Improvement	Avg	Time	(s)	 Decision	
CodeLlama 47.37 66.67 +41% 31.8 BEST:	Highest	detection	

DeepSeek-Coder 21.05 33.33 +58% 6.1 BALANCED:	Fast	+	good	
StarCoder 15.79 16.67 +6% 11.4 ACCEPTABLE 
CodeBERT 0 0 0 3.8 FAILED: 0% recall 

InCoder 0 0 0 3.7 FAILED: 0% recall 
 
Table 2 presents accuracy, precision, recall, F1-Score, and average response time per model. 

 Critical	Finding: CodeBERT and InCoder consistently failed to detect any vulnerabilities (0% recall), 
despite high accuracy (92–95%), highlighting the danger of over-reliance on accuracy alone in 
security applications. 

 CodeLlama	 Superiority: Few-shot learning elevated CodeLlama’s recall to 66.67%, a 41% 
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improvement over zero-shot. This demonstrates that few-shot approaches amplify a model’s 
inherent detection capabilities. 

 DeepSeek‐Coder	 Balance: Although achieving a lower peak recall (33.33%), DeepSeek-Coder 
maintains a superior speed-accuracy trade-off, processing inputs five times faster than CodeLlama. 

 StarCoder: Minor improvement with few-shot (+6%), while CodeBERT/InCoder remain 
architecturally incapable of detecting vulnerabilities. 

 

	
Fig. 2. Multi-model recall comparison showing zero-shot (blue bars) versus few-shot (orange bars) 

performance. CodeLlama shows 41% improvement (+19 percentage points), DeepSeek-Coder shows 58% 
improvement (+12 percentage points), while CodeBERT and InCoder remain at 0%. 

 

Fig. 2 visualizes the multi-model recall comparison, illustrating the gains of few-shot learning over 
zero-shot for capable models, and emphasizing CodeLlama’s dominant performance. 

4.3. Few‐Shot	Learning	Impact	

Few-shot learning consistently improves detection for models with baseline capability, confirming that 

existing model competency is amplified rather than fundamentally created. Specific observations include: 

 CodeLlama: +41% improvement (47.37% → 66.67% recall) 

 DeepSeek-Coder: +58% improvement (21.05% → 33.33% recall) 

 StarCoder: +6% improvement (15.79% → 16.67% recall) 

 CodeBERT/InCoder: 0% improvement, demonstrating architectural limitations 

This analysis underscores that few-shot learning can bridge performance gaps for competent models but 
cannot compensate for fundamental architectural deficiencies. 
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4.4. Vulnerability‐Specific	Performance	

Fig. 3 presents vulnerability detection rates per type for CodeLlama (few-shot). Detection performance is 
categorized into three tiers: 

 High	 Performance	 (>75%): Reentrancy (87.5%), Flash Loan (82.5%), Timestamp Dependence 
(77.5%) 

 Medium	Performance	(50–75%): MEV (75%), Oracle Manipulation (70%), Access Control (62.5%) 

 Challenging	(<50%): Business Logic (37.5%), Governance Attacks (45%), Integer Issues (50%) 
Interpretation: Detection is strongest for classical, well-defined vulnerabilities (e.g., Reentrancy), 

moderate for complex manipulations, and weakest for abstract or business logic vulnerabilities, reflecting 
inherent LLM limitations in reasoning across nuanced smart contract semantics. 

 

 
Fig. 3. Detection rate by vulnerability type (CodeLlama few-shot). Green bars (>75%): Reentrancy (87.5%), 

Flash Loan (82.5%), Timestamp (77.5%). Orange bars (50–75%): MEV (75%), Oracle (70%), Access Control 
(62.5%). Red bars (<50%): Business Logic (37.5%), Governance (45%), Integer (50%). 

5. Evaluation	 	

5.1. Key	Insights	

The	 Simplicity	 Paradox: Simple 200–400 character prompts achieve 100% success while elaborate 
1500+ character prompts fail completely. This suggests current LLMs have limited capacity for processing 

complex structured instructions in security contexts. 
Architectural	Differences	Matter: The dramatic performance gap between CodeLlama (66.67% recall) 

and CodeBERT (0% recall) demonstrates that architectural choices fundamentally determine security 
reasoning capabilities. 

Few‐Shot	 Learning	 Amplifies	 Existing	 Capabilities: Enhances models with baseline security 
understanding but cannot rescue architecturally limited models, suggesting security reasoning is an 
emergent capability requiring specific architectural properties. 

These observed behaviours reinforce the broader principle that AI-assisted security workflows must be 
evaluated through a secure-by-design lens, as emphasized in recent AI governance guidelines [21]. 
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5.2. Prompt	Engineering	Strategies	Explanation	of	Long	Prompt	Failure	

Context	 Window	 Saturation: CodeLlama's 4096-token context becomes saturated when complex 
prompts (1500+ chars) combine with contract code (500–1000 tokens), leaving insufficient capacity for 

reasoning. 
Instruction	Complexity	Threshold: Complex prompts with multiple formatting requirements exceed 

the model’s instruction-following capacity. Evidence shows sharp performance degradation: 

 Simple prompts (200–400 chars): 100% success, 21.4 s 

 Medium prompts (600–1000 chars): 85% success, 28.3 s 

 Complex prompts (1500+ chars): 0% success, 120 s timeout 
This suggests a fundamental architectural limitation, not merely a parameter tuning issue. 

5.3. Prompt	Engineering	Strategies	Production	Readiness	

False positive rate: 34.3% across all models 

False	Positive	Categories: 

 Over-sensitive reentrancy detection: 42% of FPs 

 Access control false alarms: 31% of FPs 

 MEV phantom vulnerabilities: 23% of FPs 

 Oracle manipulation overreach: 18% of FPs 
Assessment: High recall (66.67% for CodeLlama) makes it effective for initial screening, but 34.3% false 

positive rate necessitates expert review. Reduces manual review workload by ~40% while maintaining 
security coverage. 

5.4. .	Prompt	Engineering	Strategies	Limitations	

Internal	Validity: Single deployment environment (local Ollama), low temperature settings (0.0-0.1), 

manual vulnerability labeling bias. 
External	 Validity: Dataset may not capture full smart contract ecosystem diversity, evolving threat 

landscape, Solidity version specificity (focused on ^0.8.0). 

Construct	 Validity: Ground truth subjectivity, metric selection may not capture all security tool 
effectiveness aspects. 

These methodological constraints highlight the importance of embedding secure-by-design governance 
principles into LLM-based security tooling, consistent with industry recommendations [21]. 

6. Conclusion	

This paper presents the first comprehensive empirical study of prompt engineering strategies for smart 
contract vulnerability detection using off-the-shelf LLMs. Through systematic evaluation of five model 

architectures across 21 vulnerability types and 15 experimental iterations, we establish key findings that 
advance understanding of LLM capabilities for security applications. 

Our primary discovery reveals a strong inverse correlation between prompt complexity and success rate: 
simple prompts (200–400 characters) achieve 100% reliability while complex prompts (1500+ characters) 
fail completely. Multi-model comparison reveals dramatic architectural differences, with CodeBERT and 

InCoder showing 0% recall despite high accuracy, while CodeLlama achieves 66.67% recall with few-shot 
learning. 

Future work should explore multi-model ensemble approaches, Chain-of-Thought reasoning with simple 
base prompts, vulnerability-specific prompt libraries, and integration with traditional static analysis tools 

and should also consider operational safeguards and secure-by-design deployment principles to ensure 
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reliable integration of LLM-based detection systems. 
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