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Abstract:	 Traditional technology for making commercial coatings is limited in terms of efficiency and 
environmentally sustainability. Emerging Machine Learning (ML) and artificial intelligence (AI) technologies 
have the potential to transform the coatings industry through data-driven design, forecasting, and 
optimization of coating properties and processes. In this article, a brief overview of ML applications in 
protein-resistant, damping, ferroalloy, TiO₂, and epoxy-based coating design for net-zero carbon goals and 
sustainable production is presented. The major ML methods like neural networks and regression models are 
highlighted in property prediction, design optimization, and market analysis. The review concentrates on the 
transition from empirical and thermodynamic models to intelligent, green manufacturing for the substitution 
of traditional practices with novel, eco-friendly technologies. 
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1.	Introduction		

Coatings are protective and aesthetic layers in industries like construction, transportation, and 
shipbuilding. They protect against corrosion and increase surface strength, essential for the longevity and 

safety of infrastructure. Traditional coatings depend on fillers, additives, and binders to enhance properties 
such as adhesion, flexibility, and resistance to environmental stress. Nonetheless, these techniques are most 
likely to be challenged in terms of performance, cost, and the environment [1]. The international coatings 

market is led by nations such as Germany, the United States, and Japan, considering how technological 
innovation becomes important in terms of competitiveness. Integration of machine learning to coating 

formulation may unlock solutions for current deficiencies through the ability to provide more insightful, 
faster, and more eco-friendly options [2–4]. 

2.	Machine	Learning	Principles	in	Coatings	

Machine learning enables computers to learn from data and make predictions or decisions without being 
explicitly programmed. Supervised, unsupervised, and reinforcement learning are the main ML techniques, 

which are suitable for different coating data types and objectives [5–9]. ML algorithms in coating research 
are applied to process high amounts of data, recognize patterns, and streamline formulations. Overall 

workflow of ML comprises data pre-processing, model training, testing, and evaluation, as shown in Fig. 1. 
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This facilitates quick iteration and optimization of coating properties with minimal dependence on expensive 
and time-consuming experimental techniques  [10–12]. 

 

 
Fig. 1. Phases of a generalized machine learning coating model, ranging from data preprocessing to 

prediction and model development. 

 

3.	Predictive	Design	and	Estimation	Methods	

Machine learning-based predictive models are transforming decision-making across industries by deriving 
actionable insights from dense datasets. In the coatings industry, predictive models predict failures, 

maintenance requirements, production levels, and market directions. Predictive maintenance facilitated by 
ML lowers diagnostic uncertainty and increases efficiency of operations [13–15]. Estimation methods such 

as regression and probability modeling are applied to forecast demand, optimize energy consumption, and 
analyze market dynamics for coatings. Fig. 2 illustrates probability estimation paths in ML, highlighting rule 

development, examination, and verification for strong predictions [16–18]. 
 

 
Fig. 2. Paths of probability estimation in machine learning, emphasizing rule building, testing, and 

validation. 
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4.	Protein‐Resistant	Surface	Coatings	

Adsorption of protein onto surfaces can result in biofouling, affecting applications ranging from biomedical 
devices to industrial hardware. Additionally, empirical design principles like the Whitesides criteria inform 

the creation of protein-resistant surfaces but are not quantitative in their precision. ML methods, especially 
Quantitative Structure-Property Relationship (QSPR) modeling, bridge this gap by correlating molecular 
descriptors to macroscopic properties. Neural networks with input, hidden, and output layers are trained 

from carefully prepared datasets to forecast protein adsorption levels, allowing for the design of sophisticated 
bioinert coatings. Fig. 3 illustrates the structure of a neural network employed for such  

predictions [19, 20]. 

 

Fig. 3. Protein adsorption prediction neural network structure for surface coatings, showing the input, 
hidden, and output layers. 

 

5.	Free	Layer	Damping	Coatings	

Damping coatings are employed to reduce vibrations and noise in metal structures. It is not easy to 
determine mechanical properties like storage modulus and loss factor using conventional methods. Finite 

Element Analysis (FEA)-based ML algorithms give the solution by simulating the coating thickness and 
damping performance relationship. Regression models from FEA data can be used to predict Rayleigh 

damping coefficients that can be applied in the high-performance damping coatings design  [21–24]. The 
process reduces the complexity of design and minimizes the need for much physical testing. 

6.	Ferroalloy	and	Advanced	Coating	Systems	

Ferroalloy wear-resistanting coatings are required in an attempt to prolong the life of industrial parts. 
Support vector machines, linear regression, and Gaussian process regression models are applied to predict 

wear loss from composition and processing conditions. The models have been extremely precise and permit 
new compositions to be quickly screened. The same machine learning methods are applied in other advanced 
coatings, such as TiO₂ and epoxy composites, to maximize mechanical, thermal, and chemical properties for 

various applications [25, 26]. 
 

Journal of Advances in Artificial Intelligence

250 Volume 3, Number 4, 2025



7.	Green	and	Sustainable	Coating	Production	

One of the central goals of modern coatings research is to be net-zero carbon-emitting and sustainably 
manufactured. ML and AI enable the identification of more environmentally friendly raw materials, the 

efficiency optimization of processes, and the reduction of waste. By incorporating ML-based knowledge into 
production, the industry is able to move from conventional, resource- and energy-consuming processes to 
more environmentally harmonious approaches  [27, 28]. The change not only fulfills the regulatory and 

societal needs but also improves the business case for the new-generation coatings. 

8.	Conclusion	

Machine learning is revolutionizing the commercial coatings market by facilitating data-driven design, 

prediction, and optimization. From protein-resistant surfaces to damping and ferroalloy coatings, ML models 
enable record accuracy and efficiency in property prediction and process control. ML enables the integration 

that facilitates the industry's shift toward sustainable, green manufacturing with reduced environmental 
footprint and high performance. With advancing ML techniques, their use in coatings will promote innovation, 

competitiveness, and sustainability in global markets. 
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