

Traffic	Sign	Recognition	Using	CNN	

	
Wajeh E. Elside, Ahmed J. Abougarair*

 Electrical and Electronics Engineering, University of Tripoli, Tripoli, Libya.

* Corresponding author. Tel: (+218)916094184; Email: a.abougarair@uot.edu.ly (A.J.A.)
Manuscript submitted November 20, 2024; revised November 29, 2024; accepted December 25, 2024;
published January 17, 2025.
doi: 10.18178/JAAI.2025.3.1.19-39

Abstract: Traffic Sign Recognition (TSR) is a crucial component of intelligent transportation systems, aiming
to enhance road safety and support autonomous vehicle navigation. This paper focuses on developing a traffic
sign recognition system using Convolutional Neural Networks (CNNs). The system employs two distinct
models: a custom sequential CNN and a pre-trained VGG19 model. Both models were trained on the German
Traffic Sign Recognition Benchmark (GTSRB) dataset, which comprises 43 classes of traffic signs, over 30
epochs. The paper investigated two training scenarios. In the first case, both models were trained with a batch
size of 8 and a learning rate of 0.001. In the second case, the batch size was increased to 16, and the learning
rate was decreased to 0.0001. The models were evaluated based on various metrics, including accuracy,
validation curves, test accuracy, confusion matrix, F1-Score, precision, and recall. Results showed that the
second case (batch size of 16 and learning rate of 0.0001) yielded better overall performance, particularly in
test accuracy. In this scenario, the sequential model achieved a training accuracy of 99.77% and a validation
accuracy of 97.48%. The VGG19 model outperformed the sequential model, achieving a training accuracy of
99.94% and a validation accuracy of 98.46%. The results of this paper contribute to the advancement of traffic
sign recognition systems, supporting their implementation in real-world intelligent transportation and
autonomous driving applications.

Keywords:	Convolutional Neural Network (CNN), German Traffic Sign Recognition Benchmark (GTSRB),
German Traffic Sign Recognition Benchmark (GTSRB), VGG

1. Introduction	

TSR is a critical component of modern transportation systems, aimed at enhancing road safety and
efficiency. Traffic signs serve as visual cues that communicate essential information to drivers, such as speed

limits, warnings, and regulatory instructions. However, interpreting and recognizing these signs in diverse
environmental conditions and from varying perspectives pose significant challenges for automated

systems [1, 2]. Traffic signs exhibit standardized shapes, colors, and symbols designed to convey specific
messages swiftly and effectively to drivers. They encompass a wide array of visual cues, including geometric

shapes, textual information, and symbolic representations, each tailored to communicate distinct
instructions and warnings [1]. Unlike natural languages, traffic signs are universally standardized across

regions and countries, ensuring consistency in communication regardless of linguistic or cultural differences.
Computer vision technology employs deep learning models, such as Sequential Convolutional Neural

Network (CNN) and VGG 19 architectures, to tackle the challenge of traffic sign recognition. These
sophisticated models are designed to identify and categorize traffic signs by analyzing their unique visual
characteristics. This research explores the application of these CNN models in creating reliable systems that

can accurately detect traffic signs across diverse scenarios. The main objectives of the paper are as follows:

Journal of Advances in Artificial Intelligence

19 Volume 3, Number 1, 2025

develop a system to accurately recognize and classify different traffic signs, aiming for high recognition
accuracy. Design and implement deep learning models, specifically multi-dimensional Convolutional Neural

Network (CNN) models, for traffic signs recognition. Conduct simulations and training procedures to
optimize the performance of the deep learning models, focusing on accuracy and robustness. Evaluate and
compare the performance of the two deep learning models for traffic signs recognition, analyzing their

strengths and weaknesses [3–5].

2. Convolutional	Neural	Networks	(CNNs)	

CNNs have shown significant potential in practical applications. The word “convolutional” describes how

convolution, a particular kind of linear process, is used in the network. CNNs as shown in Fig. 1 can be
separated from conventional neural networks by this, as the latter mostly use matrix multiplication.

Convolution, which takes the place of matrix multiplication in at least one layer of CNNs, allows for more
efficient processing of grid-like data [6, 7]. It is commonly believed that features of CNNs shouldn’t be

dependent on spatial location while solving issues. In other words, one does not need to focus on the precise
locations of the faces in the images while using a face detection algorithm. Anywhere they may be in the

supplied photos, the only thing to worry about is where to discover them. Developing abstract qualities as
input advances into deeper levels is another essential CNN property. When categorizing photographs, for
example, the edge may be in the top layers, then simpler shapes in the layers below it, and finally higher-level

traits in the layers beyond it [8, 9].

Fig. 1. A CNN with five hidden layers.

2.1.	Convolutional	Neural	Networks	Layers	

There are many possible architectures for a CNN. most of them typically contain three primary types of

layers, which are the convolution layers, pooling layers and fully connected layers. However, some CNN
architectures don’t contain all of them, an example of such a case is the U-net CNN architecture which doesn’t

contain the fully connected layer. Each type of the three primary types of layers will be explained
below [10, 11].
Convolution	Layers: The convolutional layer forms the fundamental building block of a CNN’s structure.

This layer consists of a collection of filters, also known as kernels. These specialized filters are designed to
process N-dimensional input data, typically in the form of images. As the filters are applied across the input,

they generate an output known as a feature map, which captures essential characteristics of the original data.
This process, detailed earlier, forms the basis of how CNNs extract and learn meaningful features from visual

information.
Pooling	Layers:	pooling layer’s main role is to downsample the feature maps that result from convolutional

Journal of Advances in Artificial Intelligence

20 Volume 3, Number 1, 2025

operations. This downsampling process shrinks larger feature maps into more compact versions while
preserving the most crucial information or features at each step. 	

Fully	Connected	Layers:	Typically positioned at the conclusion of a CNN’s structure, fully connected layers
derive their name from their comprehensive connectivity: each neuron in these layers’ links to every neuron
in the preceding layer. Within the CNN framework, fully connected layers primarily function as classifiers

while also extracting high-level features. The initial fully connected layer generally receives input in the form
of a flattened, one-dimensional vector, which is created from the feature maps produced by the preceding

convolutional and pooling layers. The output from these fully connected layers represents the CNN’s final
predictions, effectively translating the learned features into meaningful classifications or outcomes.

2.2	Evaluation	Matrix	of	CNN	

Convolutional Neural Networks (CNNs) can be evaluated using various metrics depending on the specific
task they are designed for. Here are some common evaluation metrics used for CNNs [12–15]:

2.2.1.	Classification	tasks	

For image classification tasks, the following metrics are often used:

1. Accuracy: The proportion of correct predictions among the total number of cases examined
2. Precision: The ratio of true positive predictions to the total positive predictions.

3. Recall (Sensitivity): The ratio of true positive predictions to the total actual positive cases.
4. F1-score: The harmonic mean of precision and recall, providing a balanced measure of the model’s

performance.

5. Area Under the Receiver Operating Characteristic (AUC-ROC) curve: A plot of the true positive rate against
the false positive rate at various threshold settings.

2.2.2.	General	performance	metrics	

Some general performance metrics that apply to various CNN tasks include:

1. Loss Function: The optimization objective used during training, such as cross-entropy loss for
classification or mean squared error for regression.

2. Training and Validation Accuracy/Loss: These metrics help monitor the model’s performance during
training and detect overfitting.

3. Confusion Matrix: A table that describes the performance of a classification model on a set of test data for

which the true values are known.
Testing the models to ensure their ability to accurately identify and categorize images is crucial for

validation. This step verifies that the models have effectively learned the intrinsic patterns and features
required to correctly associate each image with its designated sign or category. Such validation is

indispensable for instilling confidence in the models’ performance in real-world applications. The test dataset,
comprising 7,300 diverse images distributed across various classes, serves as a comprehensive and

demanding benchmark. Successfully classifying these images showcases the models’ resilience and
underscores their potential as dependable tools for diverse image recognition challenges. It is significant to

save the trained model so that it can be loaded later in the testing phase without the need of training all over
again.

3. Methodology	 	

In this section, the methodology and implementation details of the Traffic Signs Recognition (TSR) paper

will be presented. The focus of this section is to provide a comprehensive description of the steps involved in
developing the TSR system using multiple models [16–20]. The flow chart presented in Fig. 2 outlines the

Journal of Advances in Artificial Intelligence

21 Volume 3, Number 1, 2025

process.
The main objective of this section is to offer a detailed explanation of each block in the flow chart, allowing

for a clear understanding of the paper’s methodology. By explaining each step individually, the underlying
processes and techniques employed to achieve accurate Traffic Signs recognition will be elucidated.

Fig. 2. Stages of system implementation.

3.1.	Dataset	Preparation	

The GTSRB dataset was utilized for traffic sign recognition training, with 43 classes representing different
traffic signs. The dataset was divided into 39209 training photos and 12630 testing images, which were

zoomed-in traffic signs with varying lighting and backgrounds [14]. The dataset photos have various
resolutions, including 29×27 and 145×131. Fig. 3 shows samples from the dataset. Fig. 4 shows a name and

image for each of 43 classes. Fig. 5 explains the distribution of the images used in training the model across
the 43 classes of the dataset [21–26].

Fig. 3. Five samples from the GTSRB dataset.

1. Training Set (approximately 90% of the data):

 Used to evaluate the model’s performance during the training process.

 Helps in fine-tuning the model and its hyperparameters.

 Assists in preventing overfitting by providing a measure of how well the model generalizes to unseen
data.

 Can be used to determine when to stop training (early stopping) if the model’s performance on the
validation set starts to degrade.

2. Test Set (approximately 10% of the data):

 Kept completely separate and unused until the final evaluation.

 Provides an unbiased assessment of the model’s performance on truly unseen data.

 Used to estimate how well the model will perform in real-world scenarios.
This split methodology is crucial in machine learning for several reasons:

1. It helps prevent overfitting, where a model performs well on training data but poorly on new, unseen
data.

Journal of Advances in Artificial Intelligence

22 Volume 3, Number 1, 2025

2. It allows for proper model evaluation and comparison of different models or approaches.
3. It simulates real-world scenarios where the model will be applied to new, unseen data.

Fig. 4. The mapping for each sign image to its corresponding name for the 43 classes in the GTSRB.

Fig. 5. The number of images within each class of the 43 classes contained in training portion of the GTSRB

dataset Validation Set (approximately 10% of the data).

Journal of Advances in Artificial Intelligence

23 Volume 3, Number 1, 2025

3.1.1. Shuffling	 	

Shuffling the dataset is a pivotal practice in machine learning, particularly during the training phase. It
serves a critical role in ensuring that data is evenly and randomly distributed across the training, validation,

and test sets. This randomization is essential as it helps mitigate the influence of any inherent biases or
patterns within the data, thereby enhancing the model’s performance and reliability. The primary objective

of shuffling is to generate a representative subset from the entire dataset, thereby optimizing the training
process. By randomizing the data, we guarantee that each subset which are the training, validation, or test
sets maintains a balanced distribution of different classes or labels. This balance is crucial for training a model

that can generalize effectively and make precise predictions when exposed to new, unseen data. Moreover, it
promotes robustness by preventing the model from overfitting to specific patterns in the dataset, ensuring it

learns the underlying relationships more comprehensively. Thus, shuffling not only improves the training
efficiency but also fosters a more accurate and adaptable machine learning model overall [27-32].

3.1.2. Rescaling	 	

The dataset’s images underwent normalization to the range [0, 1] by dividing each pixel value by 255. This

rescaling procedure ensures that all pixel intensities are uniformly scaled down to a normalized range.
Dividing by 255 transforms the original pixel range of [0, 255] into [0, 1], where each increment represents a

step size of 1/255. This normalization is crucial as it prevents any single pixel feature (such as a very bright
or very dark pixel) from disproportionately influencing the learning process due to its larger numerical value.
Additionally, it aligns well with certain activation functions like sigmoid or SoftMax, which are more

responsive to input values within the [0, 1] range. By maintaining pixel values within this standardized range,
the input to these activation functions remains optimal for achieving consistent and effective model

performance. Moreover, rescaling to [0, 1] simplifies comparisons between images and eases the optimization
process during training, facilitating convergence to better-performing models. This normalization step thus

enhances both the stability and efficiency of the learning process across various machine learning tasks
involving image data [33–38].

3.2. Building	the	Model	

This study utilized various neural network architectures implemented through the Keras framework.
Specifically, two types of models were employed: a custom sequential model and a pre-existing model known

as VGG19. To optimize the performance of these models, the Adam algorithm was applied for adjusting the
weights and biases of the network parameters during training.	

3.2.1.	Sequential	model	architecture	 	

The architecture typically begins with convolutional layers, which use learnable filters to extract features

like edges and textures from the input images. These filters move across the input, performing dot product
calculations. Each convolutional layer is usually followed by an activation function, commonly ReLU, to

introduce non-linearity into the model. After the convolutional layers, pooling layers are often employed to
reduce the spatial dimensions of the feature maps. This downsampling process helps maintain important

information while decreasing the number of parameters and computational requirements. Next, a flattening
layer transforms the 2D matrices of pooled feature maps into a 1D vector. This prepares the data for input
into fully connected (dense) layers, which are traditional neural network layers where each neuron connects

to every neuron in the previous layer. These dense layers learn global patterns and relationships from the
features extracted earlier in the network. The final layer of a Sequential CNN is typically a dense layer with

an activation function appropriate for the specific task, such as SoftMax for classification problems. This layer

Journal of Advances in Artificial Intelligence

24 Volume 3, Number 1, 2025

produces the model’s predictions based on the learned features. This sequential structure allows the model
to progressively learn and refine features from low-level details to high-level abstractions, making it

particularly effective for image processing tasks [13, 33].

3.2.2.	VGG	19	architecture	 	

A pre-trained model has undergone training on a big dataset for a specific job, such as image classification.

These models are often trained on high-performance hardware with large amounts of data and processing
resources. Pre-trained models have fixed architectures, which means the layer structure and arrangement

cannot be changed. Popular pre-trained models, such as ResNet, VGG, and Inception, have predefined
architectures and connections [17, 30]. VGG 19, developed by the Visual Geometry Group at Oxford University,

is an advanced Convolutional Neural Network (CNN) architecture renowned for its depth and performance
in computer vision tasks. The "19" in VGG 19 refers to its structure comprising 19 layers, characterized by 16

convolutional layers followed by ReLU activation functions, and interspersed with max pooling layers for
spatial down sampling. These convolutional layers are adept at capturing intricate spatial features from input

images, gradually learning hierarchical representations of visual information. In addition to its convolutional
layers, VGG 19 includes three fully connected layers at the end of the network. These dense layers assimilate
the high-level features extracted by the convolutional layers, enabling the model to make accurate predictions

for tasks such as image classification and object recognition. Initially trained on the ImageNet dataset, which
includes a vast array of images across multiple categories, VGG 19 achieves impressive performance metrics,

demonstrating its robustness and effectiveness in handling complex visual data.

4. Simulation	Results	

This segment offers an in-depth examination and interpretation of the outcomes derived from various

traffic sign recognition models, each employing distinct methodological approaches. The effectiveness of the
proposed CNN-based systems in identifying and categorizing traffic signs is thoroughly evaluated. To gauge

the models’ performance, key metrics including accuracy, precision, recall, and F1-score are employed.
Furthermore, test confusion matrices are utilized to assess the models’ strengths and pinpoint potential areas

for enhancement. All the simulation results prepared by Matlab [39–56].

4.1. The	Sequential	CNN	Model	

This Sequential CNN model architecture is configured with multiple layers tailored for effective TSR. The
model initiates with Conv2D layers, each applying a set of 3×3 convolutional filters to input images,
progressively extracting diverse features like edges and textures. The subsequent MaxPooling2D layers

reduce spatial dimensions by halving width and height, facilitating efficient computation while retaining
essential information. Batch-Normalization layers normalize activations across each batch, enhancing

stability and convergence speed during training. Dropout layers are strategically placed to prevent overfitting
by randomly dropping units during training, promoting robust model generalization. The Flatten layer

reshapes the 3D output into a 1D vector, preparing it for processing by Dense layers. Dense layers then
perform classification tasks, with the final layer outputting predictions tailored to the specific task, such as

identifying objects in images or recognizing patterns in data. Each layer’s output shape and parameter count
are meticulously tuned to optimize performance and ensure effective learning throughout the network.

Shown below is Table 1 which shows the layers design for this model.

Journal of Advances in Artificial Intelligence

25 Volume 3, Number 1, 2025

Table 1. The Sequential Model Architecture for the Traffic Sign Recognition Task
Layer	Type	 Output	Shape	 Parameters	

Convd2d (conv2D) (None, 46, 46, 16) 1216
Convd2d_1 (conv2D) (None, 42, 42, 32) 12832

Max_pooling2d(Maxpooling2d) (None, 21, 21, 32) 0

Batch normalization (None, 21, 21, 32) 128

Convd2d_2 (Convd2D) (None, 19, 19, 64) 18496

Convd2d_3 (Convd2D) (None, 17, 17, 64) 36928

Max_pooling2d_1(Maxpooling2d) (None, 8, 8, 64) 0
Batch normalization_1(batch) (None, 8, 8, 64) 256

Dropout (Dropout (None, 8, 8, 64) 0

Flatten(ϐlatten) (None, 4096) 0

Dense (Dense) (None, 512) 2097664

Batch normalization_2(batch) (None, 512) 2048
Dropout_1(Dropout) (None, 512) 0

Dense_1(Dense) (None, 43) 22059

4.2. 	 VGG19	Model	

This section introduces a pretrained model called VGG 19 for traffic sign recognition. Fine-tuning is the
process of adapting pretrained models to specific tasks. These models are initially trained on large datasets

to learn general features from various images. By fine-tuning them, the models can be customized to excel in
traffic sign recognition. This involves adjusting the model’s parameters or architecture while leveraging the

pre-learned features.
The VGG 19 model, as depicted in the provided Table 2, showcases a deep convolutional neural network

architecture optimized for intricate image recognition tasks. The model initiates with the “VGG19” functional
layer, which outputs a tensor shape of (None, 1, 1, 512), indicating the dimensional transformation through

successive convolutional and pooling layers. Following this, batch normalization is applied via
“batch_normalization_8”, ensuring stable and efficient gradient propagation during training with 2048
parameters. The subsequent “flatten_4” layer collapses the tensor into a 1D vector of 512 elements, preparing

for dense layer processing. “dense_8” and “dense_9” represent the fully connected layers, with 512 and 43
units respectively, culminating in the final output layer for classification. Each layer’s configuration is

meticulously tuned to optimize model performance, balancing computational efficiency with robust feature
extraction and classification accuracy.

Table 2. The Sequential Model Architecture for the Traffic Sign Recognition Task

Layer	Type	 Output	Shape	 Parameters	

vgg19 (functional) (None, 1, 1, 512) 20024384

batch_normalization_8 (None, 1, 1, 512) 2048

ϐlatten_(ϐlatten) (None, 512) 0

dense_8 (Dense) (None, 512) 262656

dense_9 (Dense) (None, 512) 22059

The model architecture exhibits a total parameter count of 20,311,147 Among these parameters,
20,310,123 are trainable, representing the weights and biases that are learned during the training process to

optimize the model’s performance. These trainable parameters enable the model to adapt and specialize for
the task at hand, such as recognizing Traffic Signs recognition. In contrast, there are 1,024 non-trainable
parameters, which consist of fixed weights and biases that are not updated during training. These non-

Journal of Advances in Artificial Intelligence

26 Volume 3, Number 1, 2025

trainable parameters are often associated with pre trained layers or frozen layers, providing architectural
constraints or leveraging pre-existing knowledge. The distribution of trainable and non-trainable parameters

within the model plays a crucial role in its complexity, capacity, and ability to learn from the training data.

4.3. 	 Models	Parameters	

The parameters indicated in Table 3 have been homogenized across the three models, making their

performances more comparable. By keeping the parameters consistent, the impact of model design and
training procedures on their respective outcomes may be isolated. This provides a better understanding of

the models’ relative strengths and flaws.

Table 3. Model Parameters Summary
Parameters	 Description	

Metrics Confusion matrix, Precision, Accuracy, Recall and F1-Score

Optimizer Adam

Loss Function categorical_crossentropy

Adam (Adaptive Moment Estimation) is an optimizer used in machine learning. It adjusts the parameters

of a model during training to minimize the error or loss. It combines adaptive learning rates and momentum
to efficiently update the parameters [22]. Other parameters were varied throughout the learning process in

order to implement the optimum modal performance.

 Number	 of	 epochs represents the complete cycles through which the entire training dataset is
processed, moving both forward and backward within the neural network during model training.

Considered a critical hyperparameter, epochs define the total iterations the model undergoes to learn and
extract meaningful patterns from the input data. Each epoch allows the model to progressively refine its

understanding and improve its predictive capabilities by adjusting internal parameters based on the
training dataset.

 Batch	 size represents the quantity of training samples simultaneously processed in a single
computational iteration during neural network training. As an important hyperparameter, batch size
significantly influences the learning dynamics and computational efficiency of the model. It determines

the number of data points evaluated and used to update the network’s weights in each training step,
thereby affecting the model’s convergence, memory usage, and overall performance characteristics.

 Learning rate is a crucial hyperparameter in machine learning algorithms that governs the magnitude of

adjustments made to a model’s parameters during optimization. It essentially dictates the size of steps
taken when updating the model’s internal variables. This hyperparameter plays a vital role in controlling

the impact of each update on the model’s learning process, influencing how quickly or slowly the model
adapts to the training data. The learning rate’s value can significantly affect the model’s convergence

speed and its ability to find optimal solutions.

4.4. Performance	Analysis	

The performance is evaluated using the training and validation dataset by measuring the models’ accuracy,
loss, precision, recall, F1-score. The developed models were examined for their performance in two study
cases during training. The models’ learning progress was assessed by monitoring validation and training

losses, as well as accuracy metrics. The validation loss and accuracy were determined on a different dataset,
whereas the training loss and accuracy were calculated on the training dataset.

Journal of Advances in Artificial Intelligence

27 Volume 3, Number 1, 2025

4.4.1.	First	case	

In the first case, the training process involved a training process with a common set of hyperparameters.

This included a training duration of 30 epochs, a batch size of 8, and a learning rate of 0.001 for the two
proposed models. To assess the learning progress of these models, the validation and training losses, as well
as accuracy metrics, were closely monitored. Figs. 6 and 7 provide a visual representation of the accuracy and

loss curves for each model during the 30 epochs. These figures illustrate the performance of the Sequential
and VGG19 models, respectively.

Fig. 6. Sequential model’s accuracy and loss curves during 30 epochs.

Fig. 7. VGG19 model’s accuracy and loss curves during 30 epochs.

Training the Sequential model for TSR over 30 epochs with a batch size of 8 and a learning rate of 0.001

yields promising results as presented in Fig. 6. The model achieves a final training accuracy of 98.2% and a
validation accuracy of 96.66%. The training loss reduces to 0.0382, and the validation loss decreases to

0.1687. The proximity between training and validation accuracies suggests effective generalization to new
data, a crucial aspect of model performance. The model not only learns well from the training data but also
demonstrates its ability to make accurate predictions on unseen validation data, indicating a successful

training process.
Fig. 7 indicates the training process of the VGG19 model for TSR recognition over 30 epochs with a batch

size of 8 and a learning rate of 0.001 demonstrates substantial progress. The model achieves a final training
accuracy of 99.2% and a validation accuracy of 97.43%. The training loss decreases to 0.0127, and the

Journal of Advances in Artificial Intelligence

28 Volume 3, Number 1, 2025

validation loss decreases to 0.1566. Notably, the training and validation accuracies are close to each other,
indicating effective generalization. This is advantageous as it suggests that the model can make accurate

predictions not only on the training data but also on new, unseen data.
Based on the training results, both models show excellent performance, but the VGG19 model appears to

have a slightly higher final validation accuracy of 97.43% compared to the Sequential model’s accuracy of

96.66%. Additionally, VGG19 exhibits a lower final validation loss of 0.1566 compared to the Sequential
model’s loss of 0.1687. Therefore, in this specific scenario, the VGG19 model appears to be the better-

performing model, as it achieved higher accuracy and lower loss on the validation dataset after 30 epochs.

4.4.2.	Second	case	

In the second case, an extended and modified training regimen was adopted with the aim of achieving
improved model performance. Each of the three proposed models underwent an extended training period of

30 epochs, accompanied by a decreased batch size of 16, and a learning rate of 0.0001. This adjustment aimed
to provide the models with more opportunities to learn and adapt to the data. The results of this

comprehensive evaluation are vividly depicted in Figs. 8 and 9, showcasing the accuracy and loss curves for
the Sequential and VGG19 models over the course of these 30 epochs.

Fig. 8. The sequential model’s accuracy and loss curves during 30 epochs.

Fig. 9. VGG 19 model’s accuracy and loss curves during 30 epochs.

Fig. 8 shows a further enhancement in model performance by extending the training to 30 epochs with a
larger batch size of 16 and a lower learning rate of 0.0001. The Sequential model achieves a final training

accuracy of 99.77%, while the validation accuracy peaks at 97.48%. The training loss drops to 0.0024, and

Journal of Advances in Artificial Intelligence

29 Volume 3, Number 1, 2025

the validation loss diminishes to 0.1216. Comparing the two cases of the sequential model, the second case
results in a more refined model. The higher accuracy and lower loss values indicate improved learning and

robustness. The close alignment between training and validation accuracies in both cases reinforces the
model’s ability to generalize effectively, making it well-suited for accurate TSR on previously unseen data.

As shown in Fig. 9, the training process of the VGG19 model for TSR over 30 epochs with a batch size of 16

and a learning rate of 0.0001 demonstrates substantial progress. The model achieves a final training accuracy
of 99.94% and a validation accuracy of 98.46%. The training loss decreases to 0.00267, and the validation

loss decreases to 0.0892. Comparing the two cases of the VGG19 model, the second case results in a more
refined model. The higher accuracy and lower loss numbers indicate improved learning and robustness. The

close alignment of training and validation accuracies highlights the model’s capacity to generalize effectively,
making it ideal for accurate TSR on previously unknown data.

When comparing the two cases, it is evident that the second case, with a batch size of 16 and a learning
rate of 0.0001, generally results in better model performance for both the Sequential and VGG19 models. The

Sequential model in the second case achieves a higher training accuracy of 99.77% and a higher validation
accuracy of 97.48%, compared to 98.2% and 96.66%, respectively, in the first case. Similarly, the VGG19
model in the second case reaches a training accuracy of 99.94% and a validation accuracy of 98.46%, which

are improvements over the 99.2% training accuracy and 97.43% validation accuracy in the first case.
Additionally, both models in the second case exhibit lower training and validation losses, indicating more

efficient learning and better generalization. These results suggest that the adjustment to a lower learning rate
and larger batch size in the second case provided the models with better learning conditions, leading to

improved performance on the traffic sign recognition task.

4.4.3.	Confusion	matrix	 	

The evaluation of the confusion matrix, a powerful tool that unveils the correspondence between true
labels and predicted labels, has been thoroughly conducted on the test dataset for all three models, as applied

in the two case scenarios previously presented. This careful examination on the test dataset provides us with
a robust understanding of the models’ performance in real-world, unseen situations, highlighting their
proficiency in correctly classifying data previously unseen. Figs. 10 and 11 showcases the confusion matrix

of the Sequential and VGG 19.

Fig. 10. Confusion matrix of the sequential model.

Journal of Advances in Artificial Intelligence

30 Volume 3, Number 1, 2025

Fig. 11. Confusion matrix of the VGG.

Upon analyzing the confusion matrix, it becomes evident that both diagonal and off-diagonal elements play
a crucial role. The diagonal elements indicate correctly predicted labels, showcasing the model’s accurate

recognition of specific traffic signs. Conversely, the off-diagonal elements represent misclassifications.
In Case 1, the sequential CNN model demonstrated varying performance across different classes. Some

classes achieved high accuracy and were correctly recognized, while others experienced misclassifications.
In contrast, Case 2 exhibited a notable improvement in accuracy compared to Case 1. However, similar to

Case 1, variations in performance were observed across different classes. Most classes achieved high accuracy,
indicating accurate recognition. Although Case 2 showed overall better performance compared to Case 1,

there is room for further improvement to enhance the model’s accuracy across all classes. Moreover, the
VGG19 model showcased superior performance in classifying the 43 classes compared to the sequential CNN
model in both cases. The majority of classes were predicted correctly, highlighting the VGG19 model’s high

accuracy and effectiveness in identifying and classifying various traffic signs.
This can be attributed to the VGG19 model’s deeper architecture and utilization of pre-trained weights, which

enhance its ability to accurately recognize and classify different types of traffic signs.Comparing the two
cases, Case 2 exhibited even higher accuracy compared to Case 1. This indicates that the changes

implemented in Case 2, such as adjusting the learning rate, batch size, and epochs, positively influenced the
model’s learning efficiency and recognition capabilities. The improvements in Case 2 highlight the

importance of fine-tuning the model to achieve better overall performance.

4.4.4.	Precession,	recall	and	F1‐Score	

Precision, Recall, and F1-Score for each of the 43 classes were measured for the two models under two
different conditions that has been mentioned. Case 1 involved training for 30 epochs, with a batch size of 16
and a learning rate of 0.0001. In Case 2, the models were trained for 30 epochs, with a batch size of 8 and a

learning rate of 0.001. These metrics help us understand how well the models perform in terms of accuracy,
capturing all relevant information, and overall effectiveness in classification.

Tables 4 and 5 listed Precision, Recall, and F1-Score for each of the 43 classes for the sequential model and
VGG 19 Respectively. The sequential CNN model was evaluated in two different cases: Case 1 and Case 2. In

Journal of Advances in Artificial Intelligence

31 Volume 3, Number 1, 2025

Case 1, the model achieved an overall F1-Score of 0.92, while in Case 2, the overall F1-Score was 0.89. The
precision, recall, and F1-Score values varied across the different traffic sign classes.

Table 4. Precession, Recall and F1-Score for the Sequential Model

Case	1	
Class	 Precession	 Recall	 F1‐Score	
0	 0.86 0.85 0.86
1	 0.92 0.95 0.93
2	 0.98 0.98 0.98
3	 0.80 0.97 0.88
4	 0.97 0.97 0.97
5	 0.92 0.98 0.95
6	 0.99 0.88 0.93
7	 0.94 0.96 0.95
8	 0.96 0.94 0.95
9	 0.95 0.95 0.95
10	 0.93 0.99 0.96
11	 0.94 0.98 0.96
12	 0.81 0.60 0.69
13	 0.96 0.99 0.98
14	 0.36 0.64 0.46
15	 0.87 0.79 0.83
16	 1.00 0.99 0.99
17	 0.82 0.81 0.82
18	 0.94 0.89 0.91
19	 0.95 1.00 0.98
20	 0.81 0.96 0.88
21	 0.94 0.88 0.91
22	 0.99 0.97 0.98
23	 0.87 0.95 0.91
24	 0.88 0.92 0.90
25	 0.97 0.96 0.97
26	 0.82 0.77 0.79
27	 0.84 0.62 0.71
28	 0.83 0.99 0.90
29	 1.00 0.93 0.97
30	 0.95 0.80 0.87
31	 0.89 0.98 0.93
32	 0.91 1.00 0.95
33	 0.90 0.54 0.67
34	 0.88 0.38 0.53
35	 0.94 0.32 0.48
36	 0.94 0.91 0.92
37	 1.00 0.45 0.62
38	 0.70 0.68 0.69
39	 0.75 0.10 0.17
40	 0.09 0.41 0.15
41	 0.95 0.95 0.95
42	 0.99 1.00 0.99

Case	2	
Class	 Precession	 Recall	 F1‐Score	
0	 0.94 0.55 0.69
1	 0.90 0.95 0.92
2	 0.84 0.93 0.88
3	 0.98 0.85 0.91
4	 0.93 0.97 0.95
5	 0.80 0.97 0.88
6	 1.00 0.71 0.83
7	 0.94 0.96 0.95
8	 0.90 0.96 0.93
9	 0.73 0.97 0.83
10	 0.96 0.96 0.96
11	 0.98 0.96 0.97
12	 0.97 0.84 0.90
13	 0.98 0.99 0.99
14	 0.54 0.97 0.69
15	 0.99 0.50 0.66
16	 1.00 0.97 0.98
17	 0.92 0.97 0.94
18	 0.80 0.94 0.87
19	 0.92 0.98 0.95
20	 0.50 1.00 0.67
21	 0.78 0.91 0.84
22	 1.00 0.81 0.89
23	 0.82 0.95 0.88
24	 0.89 0.97 0.93
25	 0.93 0.96 0.94
26	 0.75 0.43 0.55
27	 1.00 0.47 0.64
28	 0.98 0.75 0.85
29	 0.73 0.94 0.82
30	 0.93 0.67 0.78
31	 0.91 0.97 0.94
32	 1.00 1.00 1.00
33	 0.84 0.70 0.76
34	 0.05 0.01 0.01
35	 0.98 0.33 0.49
36	 1.00 0.82 0.90
37	 0.00 0.00 0.00
38	 0.93 0.86 0.89
39	 0.35 0.88 0.94
40	 0.02 0.04 0.03
41	 0.96 0.73 0.83
42	 0.58 0.81 0.68

Journal of Advances in Artificial Intelligence

32 Volume 3, Number 1, 2025

Table 5. Precession, Recall and F1-Score for the VGG 19 model

Case	1	
Class	 Precession	 Recall	 F1‐Score	

0 0.91 0.97 0.94
1 0.89 0.99 0.94
2 0.93 0.98 0.95
3 0.90 0.97 0.93
4 0.98 0.98 0.98
5 0.96 0.97 0.97
6 1.00 0.87 0.93
7 0.95 0.93 0.94
8 0.96 0.91 0.94
9 0.96 0.96 0.96

10 0.92 0.99 0.95
11 0.96 0.96 0.96
12 0.81 0.47 0.59
13 0.81 1.00 0.89
14 0.64 0.82 0.72
15 0.88 0.99 0.93
16 1.00 0.98 0.99
17 0.73 0.53 0.61
18 0.94 0.87 0.91
19 0.94 1.00 0.97
20 0.79 0.99 0.88
21 0.96 0.77 0.85
22 0.95 0.75 0.84
23 0.95 0.93 0.94
24 0.98 0.98 0.98
25 0.86 0.97 0.92
26 0.67 0.80 0.73
27 0.97 0.57 0.72
28 0.97 0.96 0.96
29 0.99 0.89 0.94
30 0.96 0.86 0.91
31 0.88 0.99 0.93
32 0.94 1.00 0.97
33 0.78 0.45 0.57
34 0.90 0.73 0.81
35 0.92 0.62 0.74
36 0.89 0.78 0.83
37 0.69 0.40 0.51
38 0.90 0.72 0.80
39 0.15 0.14 0.15
40 0.01 0.04 0.02
41 0.91 1.00 0.95
42 0.94 0.93 0.94

Case	2	
Class	 Precession	 Recall	 F1‐Score	

0 0.86 0.85 0.86
1 0.92 0.95 0.93
2 0.98 0.98 0.98
3 0.80 0.97 0.88
4 0.97 0.97 0.97
5 0.92 0.98 0.95
6 0.99 0.88 0.93
7 0.94 0.96 0.95
8 0.96 0.94 0.95
9 0.95 0.95 0.95

10 0.93 0.99 0.96
11 0.94 0.98 0.96
12 0.81 0.60 0.69
13 0.96 0.99 0.98
14 0.36 0.64 0.46
15 0.87 0.79 0.83
16 1.00 0.99 0.99
17 0.82 0.81 0.82
18 0.94 0.89 0.91
19 0.95 1.00 0.98
20 0.81 0.96 0.88
21 0.94 0.88 0.91
22 0.99 0.97 0.98
23 0.87 0.95 0.91
24 0.88 0.92 0.90
25 0.97 0.96 0.97
26 0.82 0.77 0.79
27 0.84 0.62 0.71
28 0.83 0.99 0.90
29 1.00 0.93 0.97
30 0.95 0.80 0.87
31 0.89 0.98 0.93
32 0.91 1.00 0.95
33 0.90 0.54 0.67
34 0.88 0.38 0.53
35 0.94 0.32 0.48
36 0.94 0.91 0.92
37 1.00 0.45 0.62
38 0.70 0.68 0.69
39 0.75 0.10 0.17
40 0.09 0.41 0.15
41 0.95 0.95 0.95
42 0.99 1.00 0.99

In Case 1, the model demonstrated varying performance across the classes. Several classes achieved high
precision, recall, and F1-Scores, while others exhibited lower scores, indicating challenges in accurately
recognizing those signs. The low performance in some classes can be attributed to the lack of data in the

dataset, as these signs are not very popular or even used. Similarly, in Case 2, the model showed
improvements in performance for some classes, but other classes still needed improvement.

Journal of Advances in Artificial Intelligence

33 Volume 3, Number 1, 2025

Comparing the two cases, Case 1 demonstrated slightly better overall performance with a higher F1-Score
compared to Case 2. The sequential CNN model showed potential in accurately recognizing a wide range of

traffic signs, but certain classes presented more challenges than others due to limited data availability.
Further fine-tuning and optimization may be explored to enhance the model’s performance, particularly

for the classes that exhibited lower scores in both cases. With continued refinement, the sequential CNN

model has the potential to be a reliable tool for traffic sign recognition tasks. The VGG19 pretrained model
was trained and evaluated using two different cases: Case 1 with a learning rate of 0.001 and batch size of 8,

and Case 2 with a learning rate of 0.0001 and batch size of 16. Both cases involved training the model for 30
epochs and testing it on the provided test dataset. The evaluation metrics used were precision, recall, and F1-

Score. In Case 1, the VGG19 model achieved an overall F1-Score of 0.94. The precision and recall values varied
across different traffic sign classes, ranging from 0.04 to 1.00. Notably, classes 12 and 31 exhibited lower

precision and recall values, suggesting potential challenges in accurately identifying those specific signs. This
lower performance in some classes can be attributed to the lack of data in the dataset, as these signs are not

very popular or even used. Despite this, the model demonstrated satisfactory performance overall with
relatively high precision, recall, and F1-Score values.

In Case 2, the VGG19 model achieved an overall F1-Score of 0.95. The precision and recall values ranged

from 0.36 to 1.00 across the different traffic sign classes. Similar to Case 1, classes 12 and 31 showed lower
precision and recall values, indicating potential difficulties in correctly recognizing those signs due to limited

data availability. However, the model exhibited reliable performance in traffic sign recognition with slightly
better F1-Scores compared to Case 1. Comparing the two cases, Case 2 with a lower learning rate and larger

batch size demonstrated slightly better performance in terms of F1-scores. However, Case 1 with a higher
learning rate and smaller batch size still achieved satisfactory results. These findings indicate that different

hyperparameter settings can influence the model’s performance, and further fine-tuning may be necessary
to optimize the trade-off between precision and recall for specific traffic sign classes.

4.4.5	Testing	and	comparing	the	models	

Two CNN models, namely the sequential model and a pretrained model called VGG19, were selected for the
task of Traffic Sign Recognition (TSR). To optimize their performance, these models underwent testing in two

distinct cases. In the first case, training occurred over 30 epochs with a batch size of 8 and a learning rate of
0.001, aiming to capture initial learning patterns. The second case involved 30 epochs, a batch size of 16, and

an increased learning rate of 0.0001, providing insights into model stability and generalization. The two
models were thoroughly tested to ensure they can make accurate predictions on new, unseen data. This

verification step validates their learning and readiness for real-world use. Figs. 13 and 14 present the true
and predicted labels of random sample images to provide a visual insight into the models’ performance on

the test dataset. This comprehensive evaluation confirms the models’ reliability for practical application.
Table 6 presents a thorough comparison of the test accuracy between the two models. Overall, both models

demonstrated impressive performance in traffic sign recognition across Case 1 and Case 2. The VGG19 model
showcased its superiority in Case 1, achieving a significantly higher test accuracy of 94.214% compared to
the sequential model’s accuracy of 81.995%. This highlights the effectiveness of the VGG19 model’s deeper

architecture and pre-trained weights in accurately recognizing traffic signs. Similar to Case 1, Case 2
demonstrated that the VGG 19 model significantly outperformed the sequential model, despite a slight

decline from Case 1. The VGG 19 model achieved a test accuracy of 94.658%, whereas the sequential model’s
accuracy 85.589%. This indicates that both models experienced increased performance due to changes in

batch size and learning rate.

Journal of Advances in Artificial Intelligence

34 Volume 3, Number 1, 2025

Fig. 13. Random samples of predicted image labels of the Sequential model.

Fig. 14. Random samples of predicted image labels of the VGG 19 model.

Table 6. Comparison of the Test Accuracy between the Two Models
Parameter	 Case	 Sequential	 VGG	19	

Test accuracy
1 81.995% 94.214%

2 85.589% 94.658%

5. Conclusion	

Traffic sign recognition is a critical area within intelligent transportation systems, focusing on improving
road safety and autonomous vehicle navigation. Accurate recognition and classification of traffic signs can

have diverse applications, including driver assistance systems, traffic management, and autonomous driving.
In recent years, researchers have explored various methodologies for traffic sign recognition, leveraging both
custom-designed CNN models and pre-trained networks such as VGG19. These models, trained on extensive

datasets like GTSRB, enable the learning of intricate features of traffic signs. The application of these models
contributes to improved recognition accuracy, making traffic sign recognition more effective for practical use

Journal of Advances in Artificial Intelligence

35 Volume 3, Number 1, 2025

in real-world scenarios. This paper successfully achieved its objectives of enhancing the accuracy and
reliability of traffic sign classification. The recognition and classification of traffic signs using both a

sequential custom CNN model and the pre-trained VGG19 model proved to be effective. The paper involved
meticulous customization of the models and training on the GTSRB dataset, which includes 43 classes of
traffic signs, evaluated over 30 epochs in two different scenarios.

Throughout the evaluation process, comprehensive metrics such as accuracy, precision, recall, F1-score,
and confusion matrices were employed, and validation curves were scrutinized across different scenarios.

The findings revealed that the first case, with a batch size of 16 and a learning rate of 0.0001, showed better
overall results, particularly in test accuracy. Moreover, the VGG19 model consistently demonstrated superior

performance across all aspects, highlighting its robustness in traffic sign recognition. Therefore, within the
realm of traffic sign recognition, the VGG19 model emerges as a particularly robust choice, showcasing

superior accuracy alongside other critical metrics. These insights were derived from an exhaustive evaluation
process that considered multiple parameters, including model architecture, batch size, learning rate, and

performance variations across distinct training scenarios.

6. Future	Work	

The current study has laid a foundation for traffic sign recognition using CNN models. However, there is still
a need for improvement. Several avenues of future research in this domain can contribute to refining the

accuracy and robustness of traffic sign recognition systems.
1. Real-Time Implementation: Transition from offline recognition to real-time implementation. Investigate

the feasibility and performance of deploying the models on real-time video streams, considering the
constraints of computational resources and latency requirements.

2. User Interaction and Feedback: Integrate user interaction and feedback mechanisms to further enhance
the user experience. This may involve incorporating user-specific adaptations and real-time feedback loops

to improve the models’ responsiveness to individual driving behaviors and environmental conditions.
3. Dataset Expansion: Add more images to the existing classes, especially those with a small number of

images. This augmentation improves model generalization, enhances class discrimination, increases
robustness, and facilitates fine-grained feature learning. By including diverse and representative images, the
model gains better understanding of class-specific variations, leading to improved accuracy and robustness

in traffic sign recognition.

Conflict of Interest

The authors declare no conflict of interest.

Author contributions

Wajeh E. Elside: Original draft preparation, Software; Ahmed J. Abougarair: Manuscript writing and review,
Formal analysis, Validation of results. All authors have read and agreed to the published version of the

manuscript.

References

[1] N., Bhatt, N., Laldas, P., & Lobo, V. (2022). A real-time traffic sign detection and recognition system on

hybrid dataset using CNN, Proceedings	of 7th	International	Conference	on	Communication	and	Electronics	
Systems.

[2] Chollet, F. (2018). Deep learning with python. Manning	Publications.
[3] Burkov. (2019). Machine learning basics. In The	Hundred‐Page	Machine	Learning	Book, 1st ed. Quebec

Journal of Advances in Artificial Intelligence

36 Volume 3, Number 1, 2025

City, QC, Canada: Andriy Burkov, ch. 2, sec. 1, p. 32.
[4] Sarker, I. (2021). Deep learning: A comprehensive overview on techniques, taxonomy, applications and

research directions, SN	Computer	Science,	2, 420. doi: 10.1007/s42979-021-00815-1
[5] Guma, W., et	al. (2022). Design and implementation of a traffic control system based on congestion,

International	Journal	of	Robotics	and	Automation	Technology, 96–105.	

[6] Ma’arif, A., et	 al. (2024). Deep learning-based automated approach for classifying bacterial images,
International	Journal	of	Robotics	and	Control	Systems,4(2).

[7] Enheba, H., et	al. (2024). CNNs for automatic skin cancer classification. Journal	of	Advances	in	Artificial	
Intelligence,	2(2).

[8] Hinton, G., et	al. (2006). A fast-learning algorithm for deep belief nets. Neural	Computation,	18(7), pp.
1527–1554. doi: 10.1162/neco.2006.18.7.1527

[9] Dastres R., & Soori, M. (2021). Artificial neural network systems. Int.	J.	Imaging	Robot.,	21(2), pp. 13–25.
Retrieved from https://hal.science/hal-03349542

[10] Abougarair A., & Aburakhis, M. (2022). Real time traffic sign detection and recognition for autonomous
vehicle.	International	Robotics	&	Automation	Journal,	8(3), 2022.	

[11] Nwadiugwu, M. (2021). Neural networks, artificial intelligence and the computational brain. Proceedings	

of	the	IEEE	International	Conference	on	Artificial	Intelligence	(ICAI).
[12] Heaton, J. (2022). Applications of Deep Neural Networks with Keras, Heaton	Research,	Inc.

[13] Dubey, S., & Chaudhuri, B. (2022). Activation functions in deep learning: A comprehensive survey and
benchmark. Neurocomputing,	503.

[14] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep	Learning, The MIT Press.
[15] Alzubaidi, L., et	 al. (2018). Review of deep learning: Concepts, CNN architectures, challenges,

applications, future directions. Journal	of	Big	Data,	8,	2021.
[16] Oun, A., et	al. (2022). Traffic sign classification Using deep learning based convolutional neural networks.

Azzaytuna	University	Journal,	(42), 306–326.
[17] Elwefati, S., et	al.	 (2023). Identification and control of epidemic disease based neural networks and

optimization technique. International	Journal	of	Robotics	and	Control	Systems,	3(4),	780–803.	

[18] Tilamon, H., et	al. (2023). Artificial pancreas control using optimized fuzzy logic based genetic algorithm.
International	Robotics	&	Automation,	9(2).

[19] Sharma, N., et	al.	(2021). Deep learning applications. A	Vision,	Global	Transitions	Proceedings, 2(1)., 24–
28. https://doi.org/10.1016/j.gltp.2021.01.004.

[20] GTSRB-German Traffic Sign Recognition Benchmark (kaggle.com). Retrieved from
https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign

[21] Ke, Z., Cheng, H., & Huang, H. (2021). Analyzing the interplay between random shuffling and storage
devices for efficient machine learning. Proceedings	 of 2021	 IEEE	 International	 Symposium	 on	

Performance	 Analysis	 of	 Systems	 and	 Software	 (ISPASS),	 Stony Brook, NY, USA, (pp. 276–287). doi:
10.1109/ISPASS51385.2021.00050

[22] Abougarair, A. (2020). Neural networks identification and control of mobile robot using adaptive neuro

fuzzy inference system. ICEMIS’20:	Proceedings	of	the	6th	International	Conference	on	Engineering	&	MIS.
https://doi.org/10.1145/3410352.3410734

[23] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.	Proceedings	of	
IEEE	Conference	on	Computer	Vision	and	Pattern	Recognition	(CVPR), Las Vegas, NV, USA.

[24] Tang, M., Wang, F., & Nguyen, D. (2010). Transfer learning via unsupervised task discovery for visual
recognition, IEEE	Transactions	on	Image	Processing,	19(7).

[25] Hossin, M., & Sulaiman, M. (2015). A review on evaluation metrics for data classification evaluations.

Journal of Advances in Artificial Intelligence

37 Volume 3, Number 1, 2025

International	Journal	of	Data	Mining	&	Knowledge	Management	Process,	5, 01–11.
[26] Attawil, I., & Abougarair, A. (2024). Lateral control of autonomous vehicles through adaptive model

predictive control. Proceedings	of	2024	 IEEE	4th	 International	Maghreb	Meeting	of	 the	Conference	on	
Sciences	and	Techniques	of	Automatic	Control	and	Computer	Engineering	(MI‐STA), Tripoli, Libya.

[27] Davis J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. Proceedings	

of	the	23rd	International	Conference	on	Machine	Learning,	Pittsburgh.
[28] Abosdel, A., et	al. (2022). Simulation design and hardware implementation of optimization real traffic

light control system. International	Science	and	Technology	Journal.	
[29] Zhang, J., et	 al. (2020). Lightweight deep network for traffic sign classification. Annals	 of	

Telecommunications,	75(7).
[30] Alshaibi, M., et	al. (2024). Blood cells cancer detection based on deep learning. Journal	of	Advances	 in	

Artificial	Intelligence,	2. doi: 10.18178/JAAI.2024.2.1.108-121
[31] Abougarair, A. (2016). Segmentation of road borders based on texture features, Azzaytuna	University	

Journal.	
[32] Abougarair, A. (2023). Adaptive neural networks based optimal control for stabilizing nonlinear system.

Proceedings	of	2023	IEEE	3rd	International	Maghreb	Meeting	of	the	Conference	on	Sciences	and	Techniques	

of	Automatic	Control	and	Computer	Engineering	(MI‐STA2023), Benghazi, Libya.	
[33] Ellafi, M., et	 al. (2023). Analysis of mobile accelerometer sensor movement using machine learning

algorithms. Proceedings	of	2023	IEEE	3rd	International	Maghreb	Meeting	of	the	Conference	on	Sciences	
and	Techniques	of	Automatic	Control	and	Computer	Engineering	(MI‐STA2023),	Benghazi, Libya.

[34] Salih, O.,	et	al. (2023). An overview of skin lesion segmentation methods: Techniques, challenges, and
future directions.	Proceedings	 of	2023	 IEEE	 3rd	 International	Maghreb	Meeting	 of	 the	Conference	 on	

Sciences	and	Techniques	of	Automatic	Control	and	Computer	Engineering	(MI‐STA2023),	Benghazi, Libya.	
[35] Abougarair, A. (2022). Integrated controller design for underactuated nonlinear system. Proceedings	of

Second	International	Conference	on	Power	Control	and	Computer	Technologies	(ICPC2T	2022).	
[36] Aburakhis, M., et	al.	(2022). Performance of anti-lock braking systems based on adaptive and intelligent

control methodologies. Indonesian	Journal	of	Electrical	Engineering	and	Informatics	(IJEEI), 10.	

[37] Edardar, M. (2021). Tracking control with hysteresis compensation using neural networks. Proceedings	
of 2021	IEEE	1st	International	Maghreb	Meeting	of	the	Conference	on	Sciences	and	Techniques	of	Automatic	

Control	and	Computer	Engineering	(MI‐STA2021),	Tripoli, Libya.
[38] Almgallesh, H., et	al. (2024). Dynamics and optimal control of quadcopter.	Proceedings	of 2024	IEEE	4th	

International	Maghreb	Meeting	of	the	Conference	on	Sciences	and	Techniques	of	Automatic	Control	and	
Computer	Engineering	(MI‐STA),	Tripoli, Libya.	

[39] Ashreadi, M., et	al. (2024). Model predictive control for optimizes battery charging process. Proceedings	
of 2024	 IEEE	 4th	 International	 Maghreb	 Meeting	 of	 the	 Conference	 on	 Sciences	 and	 Techniques	 of	

Automatic	Control	and	Computer	Engineering	(MI‐STA),	Tripoli, Libya.	
[40] A. Emhemmed, A., et	 al. (2022). Optimization wireless power transfer using simulation relevant

parameters. Proceedings	of	IEEE	21st	International	Conference	on	Sciences	and	Techniques	of	Automatic	

Control	and	Computer	Engineering	(STA),	Sousse, Tunisia.
[41] Salih, O., et	al. (2022). Simulation analysis and control of wireless power transfer for implantable medical

devices. Proceedings	 of IEEE	 21st	 International	 Conference	 on	 Sciences	 and	 Techniques	 of	 Automatic	
Control	and	Computer	Engineering	(STA),	Sousse, Tunisia.

[42] Abougarair, A. (2022). Position and orientation control of a mobile robot using intelligent algorithms
based hybrid control strategies.	Journal	of	Engineering	Research,	(34),	67–86.

[43] Swedan, M., et	 al.	 (2023). Stabilizing of quadcopter flight model. Proceedings	 of 2023	 IEEE	 3rd	

Journal of Advances in Artificial Intelligence

38 Volume 3, Number 1, 2025

International	Maghreb	Meeting	of	the	Conference	on	Sciences	and	Techniques	of	Automatic	Control	and	
Computer	Engineering	(MI‐STA2023),	Benghazi, Libya.	

[44] Alkaber, I., et	 al.	 (2024). Comparative evaluation of PID controller tuning through conventional and
genetic algorithm. Proceedings	of 2024	 IEEE	4th	 International	Maghreb	Meeting	of	 the	Conference	on	
Sciences	and	Techniques	of	Automatic	Control	and	Computer	Engineering	(MI‐STA),	Tripoli, Libya.	

[45] Abougarair, A. (2018). Intelligent control design for linear model of active suspension system.
Proceedings	 of 30th	 International	 Conference	 on	 Microelectronics	 (IEEE),	 Tunisia. doi:	

10.1109/ICM.2018.8703995	
[46] Saheri, W., et	al. (2023), Feature extraction for fault diagnosis based on recursive generalized extended

least squares algorithm. Proceedings	of 2023	 IEEE	 International	Conference	on	Advanced	Systems	and	
Emergent	Technologies	(IC_ASET’2023),	Hammamet, Tunisia.	 	

[47] Abdulrahman, A.,	 et	 al., (2024).	 Optimizing	 Cancer	 Treatment	 Using	 Optimal	 Control	 Theory,	 9(11),
31740–31769, 2024. doi: 10.3934/math.20241526	

[48] Sawan, S., et	al., (2024). Cancer treatment precision strategies through optimal control theory, Journal	of	
Robotics	and	Control	(JRC),	5(5), 1261–1290.	

[49] Abougarair, A., et	al. (2024). Model predictive control for achieving lane. Proceedings	of International	

Conference	on Artificial	 Intelligence	and	 its	Applications	 in	 the	Age	of	Digital	Transformation, Springer
Conference,	Nouakchott, Mauritania.

[50] Aboud, M. (2023). Robust H-infinity controller synthesis approach for uncertainties system. Proceedings	
of 11th	International	Conference	on	Systems	and	Control	(ICSC’2023), December 18–20, Sousse, Tunisia.

[51] Buzkhar, I., et	al. (2023). Design and implementation of hydric controller for two wheeled robot, IJEIT	on	
Engineering	and	Information	Technology,	11(1).

[52] Elmulhi, A., et	 al. (2023). Sliding mode control for the satellite with the influence of time delay.
Proceedings	of 2023	IEEE	3rd	International	Maghreb	Meeting	of	the	Conference	on	Sciences	and	Techniques	

of	Automatic	Control	and	Computer	Engineering	(MI‐STA2023),	Benghazi, Libya.	
[53] Buzkhar,	 I., et	 al. (2023). Modeling and control of a two-wheeled robot machine with a handling

mechanism.	Proceedings	of	2023	IEEE	3rd	International	Maghreb	Meeting	of	the	Conference	on	Sciences	

and	Techniques	of	Automatic	Control	and	Computer	Engineering	(MI‐STA2023), Benghazi, Libya.
[54] Sadek, M., et	al. (2022). Sliding mode control design for magnetic levitation system. Journal	of	Robotics	

and	Control	(JRC), 3(6).
[55] Arebi, W., et	al. (2022). Smart glove for sign language translation. International	Robotics	&	Automation	

Journal, 8(3).
[56] Abougarair, A. (2022). Optimal control synthesis of epidemic model, IJEIT	 International	 Journal	 on	

Engineering	and	Information	Technology,	8(2).
	

Copyright © 2025 by the authors. This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited (CC BY 4.0).

Journal of Advances in Artificial Intelligence

39 Volume 3, Number 1, 2025

