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Abstract:	In recent years, the demand for accurate housing price predictions has intensified, driven 
by the dynamic nature of real estate markets and the need for data-driven decision-making. Machine 
learning models (a subset of AI) have emerged as powerful tools in this domain, offering enhanced 
predictive capabilities over traditional statistical methods. In this paper, we aimed to predict house 
price in Norwich and evaluate the factors that drive the price. To achieve this, we trained four boosting 
(Gradient Boosting, XGBoost, LightGBM, and CatBoost) to predict the house price. The performance of 
these models was evaluated in a standard evaluation approach and post-hoc residual evaluation 
approach within three designed instances (testing, training, and combined [testing + training]). The 
predictive performance and significant predictors were identified, with Beds, Baths, Sqm, and other 
features showing high significance, while age of the house was not significant. We found out that 
GradientBoost and XGboost are closely related in their residuals, while LightBoost operates 
independently. The performance metrics revealed that LightGBM outperformed the other models with 
the lowest Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) in both training (RMSE 
[5.891], MAE [3.680]) and test (RMSE [13.170], MAE [7.092]) instances, achieving an R-squared value 
of (combined [0.99] train [0.998], and test [0.99]). Correlation analyses of the residuals indicated a 
strong positive correlation between Gradient Boosting and XGBoost (train [0.84], test [0.85], combined 
[0.84]), while CatBoost demonstrated a moderate correlation with both. Notably, LightGBM (−0.04 ≤ r 
≤ 0.3) exhibited distinct residual patterns, showing no significant correlation with the other models, 
suggesting it captures different aspects of the dataset. These findings show the importance of utilizing 
an ensemble approach that includes LightGBM to enhance predictive accuracy by leveraging its unique 
error characteristics alongside the complementary strengths of the other models, and inform model 
selection and ensemble strategies in future. 	
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1. Introduction	

Within the real-estate field, several researchers have started applying machine learning for 

prediction of house, classifying them based on styles and other quality features. A good example is a 

study conducted by Li et	al. [1]. This study utilises discriminant model to classifies residential building 

and also scientifically investigate the classification and prediction based on 372 residential instances 

in Hangzhou. It was reported that, a correlation has been identified between economic aspects of a 

location and morphological elements of its style. Out of these factors, the height of the building has the 

most significant impact, although the quality of the real estate and the total area of the building do not 

affect the morphological aspects and style categories. The model achieved 77.2% level of accuracy. On 

the other hand. Ho et	al. [2] use support vector machine, random forest, and gradient boosting method 

to predict property price. According to the study, Support Vector Machine (SVM) performed 

exceptionally. This shows that machine learning presents a viable and advantageous approach in 

property valuation and appraisal research, particularly in the context of predicting and classifying 

property [3]. Several researchers have shown that machine learning algorithms typically demonstrate 

superior in application. Most especially for prediction classifier purposes.  For residential prediction, 

few models have been created.  

The categorization of residential property types is a crucial undertaking in the fields of real estate, 

urban planning, and property management. Precise classification of properties allows different parties 

to make well-informed choices regarding pricing, investment, development, and resource distribution. 

Although property classification is crucial, manual categorization procedures are frequently laborious, 

subjective, and susceptible to mistakes. Furthermore, the growing variety of dwelling kinds and 

characteristics presents difficulties for conventional classification methods. Automated, data-driven 

solutions are required to effectively and reliably identify residential properties [4]. 

The objective of this study is to optimize the application of machine learning in the real estate sector 

and better the process of decision-making in house-sales by analyzing the intricate relationship 

between various parameters and the precision of home pricing machine. 

2. Related	Work	

To identify the related works, we employed a literature search strategy involving a systematic and 

comprehensive search (Prisma) of existing reputable eight online research database—Google Scholar, 

IEEE Xplore, JSTOR, Emerald Insight, SpringerLink, ResearchGate, ProQuest, and EconLit (via 

EBSCOhost). The article published from 2014 year to 2024 year were considered and included.  The 

keywords used for the searches are “House price prediction”, “Housing price forecast”, “Real estate 

valuation”, and “Property price modeling” in English language with an inclusion criterion of only 

reviewed article and open source resulting to an exclusion criterion of article <2014, theses, and books, 

conferences papers, data, reprints, presentation, posters, un-reviewed article and not open-source 

article. Following the stated eligibility criteria, we identified 5,116 studies out of which 47 studies were 

included (Fig. 1).  
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Fig. 1. PRISMA diagram illustrating the identification, screening, and selection process for final study 

inclusion. 

2.1.	Application	of	ML	in	Real‐estate	

Zirui [5] examined three ML models: multiple linear regression, back propagation neural networks, 
and random forest. Each model’s advantages and limitations in the context of housing price prediction 

are discussed, alongside optimization strategies to improve their predictive accuracy. In evaluating the 
ML models, the study notes that multiple linear regression is effective for analyzing linear 

relationships, back propagation neural networks are beneficial for their fault tolerance, and random 
forest excels in handling complex, non-linear relationships due to its ensemble structure [6, 7]. With 

data from a Kaggle competition, Wu [8] evaluates five models, including linear regression, KNN, 
support vector regression, and boosting algorithms (XGBoost and LightGBM), as well as a stacked 
model.  

The findings suggest that while the stacked model is highly effective, future models incorporating 
broader economic trends may further improve house price predictions, guiding strategies in real 

estate platforms. Machine learning models present a powerful tool for real estate house price 
prediction, with regression, clustering, and classification models each providing unique 

advantages [9–21]. Similarly, Maloku [22] employed both linear regression and random forest 
regression models and concluded that the Random Forest Regressor is the more effective model for 

predicting house prices with higher accuracy when considering the specified variables.  
In a study by Sengar [23], house prices are predicted with enhanced accuracy by analyzing local area 

statistics, which include all relevant trends and factors influencing prices including random forest, 
linear regression, and lasso regression. By employing these algorithms, it was stated that the margin 
of error was reduced, resulting in more precise price predictions. Oluyele et	al. [24] developed a 

machine learning model to predict house rental prices in Lagos, Nigeria. They analyzed the 
relationship between rental prices and various property features, including the number of bedrooms, 

bathrooms, and toilets, as well as the property’s location and status (e.g., newly built, furnished, or 
serviced).  

Five machine learning models were trained where random forest regression model emerged as the 
top performer. They found that the number of bedrooms and the property’s location were the most 

significant factors influencing rental prices, as confirmed by feature importance analysis [25, 26]. 
However, Nwankwo et	al. [27] highlights the complexity of predicting house prices due to the wide 

variability influenced by multiple factors, such as property features, location, and neighborhood 
characteristics. This study addresses this gap by proposing a multi-modal deep learning approach that 

Journal of Advances in Artificial Intelligence

3 Volume 3, Number 1, 2025



  

integrates diverse data sources, including textual descriptions, geo-spatial neighborhood information, 
house images, and raw property attributes. A joint embedding technique was used to capture a unified 

representation of these features, allowing the model to learn a more accurate depiction of each 
property.  

A downstream regression model then predicts the house price using this joint embedding. After the 
experiment, it was noted that combining text embedding from property descriptions and image 

embedding from house photos with geo-spatial and attribute data significantly enhances predictive 
accuracy. Nwankwo et	al. [28] explore the relationship between house prices and features such as the 

number of bedrooms, availability of parking space, and property types. This study applies a machine 
learning approach to develop predictive models for estimating house prices. The Variance Inflation 

Factor (VIF) was applied to minimize multicollinearity among features, and Streamlit dashboards 
were used to create an interactive interface for the model.  

The study found a strong positive correlation between the number of bedrooms and both the 

number of toilets and bathrooms. Similarly, Basysyar et	al. [29] present a house price prediction model 
that leverages Exploratory Data Analysis (EDA) and machine learning with feature selection to 

improve accuracy. Recognizing that predicting a price range is often more practical than forecasting a 
single value, they treat price prediction as a classification problem, offering more actionable insights 

than traditional tools like the House Price Index, which averages price changes and lacks precision for 
individual properties. A linear, ridge, Lasso, and Elastic Net regressions were trained on a housing 

dataset of 1,460 records and 81 features. Their method demonstrated low error margins, indicating 
that careful EDA and feature selection significantly enhance prediction accuracy, providing a reliable 

tool for price estimation in real estate. Studies consistently reveal that incorporating diverse features, 
such as house characteristics, location data, and neighborhood attributes, significantly improves 
prediction accuracy. Advanced models like Random Forest and Extra Trees Regression often 

outperform traditional linear models, owing to their ability to capture complex relationships within 
the data [30–39]. 

3. Research	Approach	

3.1.	Research	Design	

In this study we adopt a mixed methods research design, which combines both quantitative and 

qualitative approaches to provide a comprehensive approach of achieving the project aim. The 
quantitative phase focus on exploring relationships between various numerical variables, such as 
house price, number of bedrooms, bathrooms, garage spaces, property type, and other features. The 

rationale for this design is to not only quantify and measure variables but also to explore the 
underlying context, experiences, and perceptions that quantitative methods may not fully capture. A 

sequential explanatory design was followed, where the quantitative phase was conducted first, 
followed by the qualitative phase. This sequence ensures that the qualitative data helps to explain and 

explore patterns that emerge from the quantitative findings. By integrating both phases, the study 
cross-analyze the quantitative and qualitative findings, providing a robust interpretation of housing 

market dynamics. This makes it possible to ensures that while the quantitative analysis provides 
statistical rigor, the qualitative insights offer a deeper understanding of the underlying factors driving 

the housing market patterns [40]. 

3.2.	Tools,	Equipment,	Software,	and	Library	or	Package	

The selected algorithm was implementation in R—a statistical and data science software suitable 
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and efficient for machine learning implementation. The tidyverse package was used for preprocessing 
before building the model. This package offers a collection of R packages used for data wrangling, data 

manipulation, numerical operation and array manipulation in conjunction with dloookr, 
summarytools, caret, catboost, xgboost, gbm, lightgbm, mlbench, reshape2, and scales packages. The 

prototype was implemented on Rstudio Integrated Development Environment (IDE) (Link to the CODE 
from Ref. [41]) 

3.3.	Data	Collection	

The Norwich residential properties dataset was used in this paper. The dataset consists of 

information on 2,335 residential properties traded in Norwich between January 2017 and October 
2023. Each property is uniquely identified by a property number, and the primary variable of interest 
is the sale price, recorded in thousands of pounds. The dataset includes various structural features of 

the properties, such as the number of bedrooms, bathrooms, recreation rooms, and garages, along with 
the internal area measured in square meters. Property types are categorized into eight types (Table 1), 

including empty plots, flats, and detached houses. Additionally, environmental factors such as 
postcode, air pollution levels, and traffic noise are provided. Postcode data divides Norwich into eight 

regions, while air pollution is measured in millionths of a gram of particulate matter per cubic meter, 
and traffic noise is recorded in decibels. The dataset also includes variables related to energy efficiency, 

such as the presence of double glazing, solar panels, and loft insulation. Garden size is recorded in 
square meters, and the age of the property in years is also included. Finally, the dataset tracks the 
month of the transaction, ranging from January 2017 to October 2023. (Link to the dataset from [42]). 

 
Table 1: Data Validity Analysis: Outlier Detection and Impact on Variable Means 

Variable Outliers cnt Outliers’ ratio Outliers mean With mean Without mean 

Price 145 6.21 534 284 268 

Beds 131 5.61 2.98 2.76 2.74 

Baths 345 14.8 1.71 1.11 1 

Recs 23 0.985 4.22 1.62 1.59 

Garages 0 0 - 0.519 0.519 

Type 0 0 - 5.03 5.03 

Pcode 0 0 - 4.09 4.09 

Sqr 220 9.42 140 90.2 85 

dg 0 0 - 0.287 0.287 

Solar 578 24.8 1 0.248 0 

Loft 0 0 - 0.578 0.578 

Gsize 219 9.38 578 170 127 

Poll 6 0.257 58.2 26.1 26.1 

Noise 0 0 - 80.2 80.2 

Age 19 0.814 292 53.5 51.6 

Month 0 0 - 42.1 42.1 

 

3.4.	Data	Preprocessing	

We ensure that the dataset is a representative of the types of residential property expect to 

encounter in the real-world scenario. Sufficiently large to train and test a complex model. The dataset 
was splitted into training and testing sets to assess generalization performance with the percentage, 

80% and 20% [43].  
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3.5.	Model	Selection	

We compared four advanced boosting algorithms (Fig. 2): Gradient Boosting Machine (GBM), 
XGBoost, LightGBM, and CatBoost, each with unique characteristics that make them suitable for the 

task. The GBM built an additive model function (Eq. (1)) in a forward stage-wise manner and 
optimizing for errors made by previous models sequentially, which leads to improved accuracy. 

XGBoost is an optimized implementation of the gradient boosting framework that incorporates 
regularization techniques to prevent over fitting, enhances training speed through parallel processing, 

and is widely recognized for its strong predictive capabilities in machine learning competitions. 
LightGBM, developed by Microsoft, is designed for speed and efficiency, particularly with large 

datasets, using a histogram-based approach to improve training speed while maintaining high 
accuracy, and it handles categorical features natively, making it user-friendly. CatBoost, on the other 

hand, is specifically designed to handle categorical features without extensive preprocessing, utilizing 
ordered boosting and symmetric trees for enhanced robustness. 

𝐹ሺ𝑥ሻ ൌ  𝐹ሺ𝑥ሻ   ∑ ϒℎ
ெ
ୀଵ                             (1) 

         𝐿ሺ𝜃ሻ ൌ  ∑ 𝐿ሺ𝑦, ŷሻ   ∑ Ώ൫𝑓൯
ୀଵ

ே
ୀଵ                        (2) 

         𝑓ሺ𝑥ሻ ൌ  ∑ ℎሺ𝑥ሻெ
ୀଵ                               (3) 

         𝐿ሺ𝜃ሻ ൌ  ∑ 𝐿ሺ𝑦, ŷሻ   𝑅𝑒𝑔ሺ𝜃ሻே
ୀଵ                      (4) 

        𝑓ሺ𝑥ሻ ൌ  𝐹   ∑ ℎሺ𝑥ሻெ
ୀଵ                               (5) 

 
Fig. 2. The model flowchart. 

 

3.6.	Model	Evaluation	Metrics	

The performance of the four machine learning models—Gradient Boosting Machine (GBM), XGBoost, 
LightGBM, and CatBoost—were evaluated in a rigorous manner across three data subsets (instances): 

the testing dataset, the training dataset, and the combined (testing + training) dataset. The 

Journal of Advances in Artificial Intelligence

6 Volume 3, Number 1, 2025



  

performance check of the model was done in two ways: (1) the standard evaluation approach, and (2) 
the post-hoc residual evaluation approach. The standard approach evaluation was based on key 

metrics, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), R-squared (R²), and 
Mean Absolute Percentage Error (MAPE). These metrics allowed for the assessment of the models’ 

predictive accuracy and generalization capabilities. On the other hand, the poc-hoc residual evaluation 
approach was introduced to evaluate the similarity, relationship and patterns between the models. For 

each model, residuals were calculated by taking the difference between the predicted house prices and 
the actual prices (yi−y). The descriptive statistic of the residuals was taken to provide insight into the 

distribution of errors and a Shapiro-Wilk test was performed to check and confirmed the distribution 
observed. In a similar manner, the correlation between the residuals from the four models was 

examined within each dataset instance to explore any relationships between the models’ underlying 
structures and a Principal Component Analysis (PCA) was conducted on the residuals to detect 
underlying patterns and variance in the residuals across the models, allowing for the identification of 

dominant components that could explain the differences in model performance. 
 

𝑅𝑀𝑆𝐸 ൌ  ටଵ

ଶ
∑ ሺ𝑦 െ ŷሻ

ୀଵ    ,    𝑀𝐴𝐸 ൌ  ଵ


∑ |𝑦 െ  ŷ|

ୀଵ  

𝑅ଶ ൌ 1 െ  
∑ ሺ௬ି ŷሻమ

సభ

∑ ሺ௬ି ȳሻమ
సభ

   ,   𝑀𝐴𝑃𝐸 ൌ 1 െ  
∑ ሺ௬ି ŷሻమ

సభ

∑ ሺ௬ି ȳሻమ
సభ

 

𝐶𝐼 ൌ  �̅�  േ 𝑧 ቀ ௦

√
ቁ  ,  𝑀𝐴𝑃𝐸 ൌ  ଵ


∑ ቚ௬ି ŷ

௬
ቚ

ୀଵ    , 

where �̅� the sample mean, z is the z-value for the desired confidence level, sss is the sample standard 

deviation, and n is the sample size. 

4. Result	

Table 2 above provide insights into property characteristics. The price has a mean of £284.3k 

(SD=126.4, CV = 0.4) indicating moderate variability. Bedrooms and bathrooms have means of 2.8 (SD 
= 1, CV= 0.3) and 1.1 (SD = 0.4, CV = 0.4) respectively, showing little variation. Garages have a low mean 

(0.5) but a high CV (1.2), indicating significant variability. 
 

Table 2. Summary Statistic of the House Features 
House	Features	 IQR(Max–Min)	 Med	 Mean	 Sdv(CV)	

Price 120.2(1087.8–20.5) 263.2 284.3 126.4(0.4) 
Beds 1(7–0) 3 2.8 1(0.3) 
Baths 0(4–1) 1 1.1 0.4(0.4) 
Recs 1(5–0) 2 1.6 0.7(0.4) 

Garages 1(2–0) 0 0.5 0.6(1.2) 
Sqm 31(372–0) 83.2 90.2 38.4(0.4) 
Gsize 136(1011.5–1) 113.6 169.7 160.1(0.9) 
Poll 15(61–2) 26 26.1 10.4(0.4) 

Noise 63(140–20) 80 80.2 35(63) 
Age 74(426–0) 41 53.5 42.3(0.8) 

 
The internal area averages 90.2 sqm (SD = 38.4, CV = 0.4), while garden size is highly variable, with 

a mean of 169.7 sqm and SD of 160.1 (CV = 0.9). Pollution and noise levels show moderate variation 
with means of 26.1 and 80.2, respectively, and CVs around 0.4 for pollution and high (63) for noise. 

Finally, property age shows considerable variability, with a mean of 53.5 years (SD = 42.3, CV = 0.8).  
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Table 3. Correlation of House Price and Other House Related Features 
Independent	
Variables	

Price(dependent	variable)	
t	 r	 p	 Decision	

Beds 54.24 0.75 2.2e−16 Significant 

Baths 36.00 0.60 2.2e−16 Significant 

Resc 38.46 0.62 2.2e−16 Significant 

Garage 33.94 0.58 2.2e−16 Significant 

Sqm 122.11 0.93 2.2e−16 Significant 

Gsize 36.267 0.60 2.2e−16 Significant 

Poll −4.32 −0.09 1.63e−05 Significant 
Noise −4.745 −0.10 2.207e−06 Significant 
Age 0.701 0.015 0.4832 Not Significant 

 
There is a strong significant correlation (Table 3) between price and number of bedrooms (r	= 0.75, 

p	< 0.05), bathrooms (r = 0.60, p	< 0.05), recreation rooms r = 0.62, p	< 0.05), garages (r = 0.58, p	< 
0.05), and garden size (r = 0.60, p	< 0.05). This suggests that as these features increase, the property 

price also rises. Similarly, the internal area (sqm) shows the strongest positive relationship with price 
(r = 0.93,	p	< 0.05), indicating that larger homes are considerably more valuable. On the other hand, 

environmental factors such as air pollution (t = −4.32, r = −0.09) and traffic noise (t = −4.75, r = −0.10) 
have a weak but statistically significant negative impact on property prices. Interestingly, property age 

has no significant effect on price (t = 0.70, r = 0.015, p = 0.48), suggesting that the age of a property 
does not play a major role in determining its market value.  

 
Table 4: Normality Test 

House	Features	 W	 P	value	 Decision	
Price 0.913 2.2e−16 Significant 
Beds 0.877 2.2e−16 Significant 
Baths 0.498 2.2e−16 Significant 
Recs 0.809 2.2e−16 Significant 

Garages 0.720 2.2e−16 Significant 
Sqm 0.865 2.2e−16 Significant 
Gsize 0.790 2.2e−16 Significant 
Poll 0.996 1.841e−05 Significant 

Noise 0.952 2.2e−16 Significant 
Age 0.824 2.2e−16 Significant 

 
The normality test results in the Table 4 indicate that Price, beds (p	< 0.05) recreation rooms (p < 

0.05), garages (p	< 0.05), internal area (sqm) (p < 0.05), garden size (p	< 0.05), noise (p	< 0.05), and 
age (p < 0.05), and Pollution (p	< 0.05), all have W-values below 0.95 and highly significant, showing 

that these variables do not follow a normal distribution.  
Beds show (Table 5) a strong positive correlation with bathrooms (0.52) and recreation rooms 

(0.58), indicating that properties with more bedrooms tend to have more bathrooms and recreational 
spaces. Internal area (sqm) has a particularly strong positive correlation with beds (0.78) and 

recreation rooms (0.69), suggesting that larger homes often accommodate more rooms. Similarly, 
Garages exhibit weaker correlations, with the highest at 0.49 with garden size. Pollution and noise are 

strongly correlated (0.66), indicating that areas with higher pollution levels also experience more 
traffic noise, but they show negligible relationships with other property features. Finally, House age 
has a slight negative correlation with garages (−0.32) and weak positive correlations with recreation 

rooms (0.33) and sqm (0.13), suggesting that older properties may have fewer garages but could still 
offer more recreational spaces. 
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Table 5. Correlation Analysis of the Independent Features 
Independent	
variables	

Beds	 Baths	 Recs	 Garages	 Sqm	 Gsize	 Poll	 Noise	 Age	

Beds  0.52 0.58 0.40 0.78 0.45 −0.02 −0.04 0.09 
Baths 0.52  0.49 0.34 0.60 0.26 −0.03 −0.03 0.02 

Recs 0.58 0.49  0.20 0.69 0.31 −0.03 −0.07 0.33 

Garages 0.40 0.34 0.20  0.46 0.49 −0.03 −0.03 −0.32 

Sqm 0.78 0.60 0.69 0.46  0.45 −0.05 −0.07 0.13 

Gsize 0.45 0.26 0.31 0.49 0.45  0.01 −0.01 −0.18 

Poll −0.01 −0.03 −0.03 −0.03 −0.05 0.01  0.66 −0.02 

Noise −0.04 −0.03 −0.07 −0.03 −0.07 −0.01 0.66  −0.06 
Age 0.09 0.02 0.33 −0.32 0.13 −018 −0.02 −0.06  

 
Table 6. Model Metric Result 

Model	 RMSE	 MAE	 Rsquared	 MAPE	 Instances	
CatBoost 27.053 20.102 1 8.633 Test 

GradientBoost 24.563 18.910 0.96 8.067 Test 
XGboost 23.913 18.571 0.97 8.092 Test 

LightBoost 13.170 7.092 0.99 3.014 Test 
CatBoost 0.794 0.564 0.999 0.261 Train 

GradientBoost 22.980 17.779 0.967 7.962 Train 
XGboost 19.249 15.252 0.977 6.750 Train 

LightBoost 5.891 3.680 0.998 1.630 Train 
CatBoost 12.119 4.472 0.99 1.935 Test +Train 

GradientBoost 23.306 18.005 0.97 7.983 Test +Train 
XGboost 20.268 15.915 0.974 7.018 Test +Train 

LightBoost 13.187 7.104 0.99 3.015 Test +Train 

 
LightBoost stands (Table 6) out as the top-performing model in both the test (RMSE = 13.170, MAE 

= 7.092, R2 = 0.99), train datasets (RMSE = 5.891, MAE = 3.680, R2 = 0.99), and combined dataset 

scenario (RMSE = 13.187, MAE = 7.104, R2 = 0.99). This indicates that it explains 99% of the variance 
in the test data with a low percentage error 3.014, 1.630, and 3.015 respectively. XGboost and 
GradientBoost follow closely, with XGboost showing competitive performance in the test set (RMSE: 

23.913, MAE: 18.571, R = 0.97), similarly, CatBoost shows the highest RMSE in the test set (27.053, R 
= 1.0), and combined dataset (RMSE = 12.119, MAE = 4.472, R2 = 0.99). However, it performs better 

than GradientBoost and XGboost in the training phase, suggesting potential strengths when tailored 
to specific datasets. LightBoost and CatBoost demonstrated superior predictive capabilities across 

various datasets, while GradientBoost consistently showed the least effectiveness (Fig. 3). 
 

 
Fig. 3. The model performance metric result according to the three instances. 
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4.1.	Residual	Analysis	Result	

In Table 7 below, Catboost has the highest mean residual of 0.329, indicating a tendency to 
overestimate property prices, with an upper confidence interval (CI) of 4.194, suggesting it captures 

higher price points well. In contrast, Lightboost shows the lowest mean residual of −1.372, reflecting 
consistent underestimation, with a median of −0.545 and a lower CI of −0.902. Xgboost has a mean 

residual of −0.374, indicating slight underestimation, while Gradientboost also exhibits a negative 
mean of −0.307, leaning toward minor undervaluation.  

 
Table 7. Summary Statistic of the Residual 

Instances	 Model	 Mean(median)	 Lower	CI(Min)	 Upper	CI(Max)	

Train+Test 

GradientBoost −0.307(−0.369) −2.287(−80.387) 1.933(184.705) 
XGboost −0.374(0.071) −2.472(−69.266) 1.186(77.913) 

LightBoost −1.372(−0.545) −0.902(−69.800) 1.663(63.310) 
CatBoost 0.329(−0.001) −0.910(−68.623) 4.194(165.737) 

Train 

GradientBoost −0.339(−0.339) −1.392(−80.387) 0.714(184.705) 
XGboost −0.307(0.136) −1.231(−69.266) 0.618(77.913) 

LightBoost −0.602(−0.183) −0.849(−50.659) −0.355(14.1517) 
CatBoost 0.001(0.004) −0.038(−4.289) 0.039(3.789) 

Test 

GradientBoost −0.178(−1.010) −2.289(−69.336) 1.933(113.113) 
XGboost −0.643(−0.100) −2.472(−68.657) 1.186(57.712) 

LightBoost 0.381(0.058) −0.902(−129.101) 1.663(91.692) 
CatBoost 1.642(0.328) −0.910(−68.623) 4.194(165.737) 

 
In the test set (Table 8), XGboost residuals demonstrate normality (p > 0.05), indicating they are 

normally distributed. In contrast, GradientBoost, LightBoost, and Catboost all show significant 

deviations from normality (p < 0.05). In the train set, Xgboost again confirms normality (p >0.05), 
while the other models, including GradientBoost display significant non-normality. For the combined 

sets, XGboost remains normally distributed (p > 0.05), whereas GradientBoost, LightBoost, and 
CatBoost indicate significant deviations from normality (p < 0.05). 

 

Table 8. Normality test of the residual 
Instances	 Model	 W	 Decision	

Test 

GradientBoost Residual 0.991 (p	<	0.05) Significant 
XGboost Residual 0.997 (p	>	0.05) Not significant 

LightBoost Residual 0.753 (p	<	0.05) Significant 
CatBoost Residual 0.964 (p	<	0.05) Significant 

Train 

GradientBoost Residual 0.982 (p	<	0.05) Significant 
XGboost Residual 0.999 (p	>	0.05) Not significant 

LightBoost Residual 0.822 (p	<	0.05) Significant 
CatBoost Residual 0.957 (p	<	0.05) Significant 

Test+Train 

GradientBoost Residual 0.985 (p	<	0.05) Significant 
XGboost Residual 0.999 (p	>	0.05) Not significant 

LightBoost Residual 0.770 (p	<	0.05) Significant 
CatBoost Residual 0.549 (p	<	0.05) Significant 

 
Notably (Table 9), GradientBoost and XGboost show a strong positive correlation (r = 0.84, p < 0.05), 

indicating that errors from these models are closely related. Additionally, GradientBoost exhibits a 
moderate positive correlation with CatBoost (r = 0.38, p < 0.05), suggesting that predictions from these 
two models may influence each other. In contrast, LightBoost shows no significant correlation with 

any of the other models, as indicated by the near-zero correlation coefficients (r = −0.01 with 
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GradientBoost and 0.00 with XGboost), both with p > 0.05. This suggests that the residuals from 
LightBoost are independent of the other models, implying unique error characteristics. Meanwhile, 

XGboost also demonstrates a positive correlation with CatBoost (r = 0.34, p < 0.05), indicating that 
they shared some level of variance in the residuals between these two models. 

 
Table 9. Correlation Analysis of the Model Results on Test + Train 

Model	
GradientBoost	

Residual	
Xgb	Residual	

LightBoost	
Residual	

Catboost	
Residual	

GradientBoost Residual  0.84 (p < 0.05) −0.01 (p>0.5) 0.38 (p	< 0.05) 
Xgb Residual 0.84 (p < 0.05)  0.00 (p	> 0.05) 0.34 (p	< 0.05) 

LightBoost Residual −0.01 (p	> 0.05) 0.00 (p	> 0.05)  0.01 (p	>	0.05) 
CatBoost Residual 0.38 (p	< 0.05) 0.34 (p	< 0.05) −0.01(p	>	0.05)  

 
GradientBoost and XGboost exhibit (Table 10) a strong positive correlation (r = 0.85, p < 0.05), 

suggesting that the errors from these models are closely aligned. Additionally, GradientBoost also 

shows a notable positive correlation with CatBoost (r = 0.78, p < 0.05), indicating that the residuals 
from these models share some variance. 

Conversely, LightBoost shows no significant correlation with either GradientBoost or XGboost, as 
indicated by near-zero coefficients (r = 0.01 and 0.03, respectively, both p > 0.05). This independence 
suggests that LightBoost’s predictions and residuals do not overlap significantly with the other models. 

However, XGboost demonstrates a strong positive correlation with CatBoost (r = 0.70, p < 0.05), 
indicating some relationship in their residual patterns. 

  
Table 10. Correlation Analysis of the Model Results on Test 

Model	
GradientBoost	

Residual	
Xgb	Residual	

LightBoost	
Residual	

CatBoost	
Residual	

GradientBoost 
Residual 

 0.85 (p < 0.05) 0.01 (p	> 0.5) 0.78 (p	< 0.05) 

Xgb Residual 0.85 (p<0.05)  0.03 (p	> 0.05) 0.70 (p	< 0.05) 
LightBoost Residual 0.01 (p	> 0.05) 0.03 (p	> 0.05)  −0.04 (p	>	0.05) 
CatBoost Residual 0.78 (p	< 0.05) 0.70 (p	< 0.05) −0.04 (p	>	0.05)  

 

The correlation analysis of model residuals on the training dataset (Table 11) indicates that 
GradientBoost and XGboost demonstrate a strong positive correlation (r = 0.84, p < 0.05), indicating 

that their residuals behave similarly. GradientBoost also exhibits a moderate positive correlation with 
Catboost (r = 0.52, p < 0.05), suggesting some shared variance in their prediction errors. In contrast, 

LightBoost shows no significant correlation with either GradientBoost or XGboost, as indicated by the 
near-zero coefficients (r = 0.00 and −0.03, respectively, both p > 0.05). This suggests that LightBoost’s 

errors are independent of the others, potentially offering a different perspective in model performance. 
Meanwhile, XGboost maintains a moderate positive correlation with Catboost (r = 0.57, p < 0.05), 

further reinforcing the notion of related prediction patterns between these two models. 
 

Table 11. Correlation Analysis of the Model Results on Train 

Model	
GradientBoost	

Residual	
Xgb	Residual	

LightBoost	
Residual	

Catboost	
Residual	

GradientBoost Residual  0.84 (p < 0.05) 0.00 (p	> 0.5) 0.52 (p	< 0.05) 
Xgb Residual 0.84 (p	< 0.05)  −0.03 (p	> 0.05) 0.57 (p	< 0.05) 

LightBoost Residual 0.00 (p	> 0.05) −0.03 (p	> 0.05)  −0.01 (p	>	0.05) 

Catboost Residual 0.52 (p < 0.05) 0.57 (p < 0.05) -0.01 (p > 0.05) 	

Journal of Advances in Artificial Intelligence

11 Volume 3, Number 1, 2025



  

 
Fig. 4. Relationship between the residuals (Train, test, and Train+Test). 

 

 
Fig. 5. Patterns between the residuals of the models by instances. 

 

 
Fig. 6. Patterns between the residuals of instances by models. 
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At the model level (Table 12), the first three principal components account for 96.07% of the 
variance, with PC1 alone explaining 52.02%, indicating that the residual variability is concentrated in 

a few dimensions (Fig. 6). In contrast, at the instance level, the variance is more evenly distributed, 
with the first three principal components explaining nearly equal proportions (34.22%, 33.67%, and 

32.11%). This model-level residuals show distinct dominant dimensions, the instance-level residuals 
exhibit balanced uniform distribution highlights consistent residual patterns across individual data 

points rather than across models (Fig. 5).   
 

Table 12. PCA Important of Component 
Type	 Metric	 PC1	 PC2	 PC3	 PC4	

By model 

Standard deviation 1.4426 1.0002 0.8725 0.39657 

Proportion of variance 0.5202 0.2501 0.1903 0.03932 

Cumulative proportion 0.5202 0.7704 0.9607 1 

By 
instances 

Standard deviation 1.0132 10051 0.9814  
Proportion of variance 0.3422 0.3367 0.3211  
Cumulative proportion 0.3422 0.6790 1  

 
PCA Loadings: Linear Representations of Principal Components Based on the model residuals in 

Eq. (1). 

 
PC1 =0.644 ൈ 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  0.636 ൈ 𝑋𝑔𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  0.033 ൈ 𝐿𝑖𝑔ℎ𝑡𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

0.424 ൈ 𝐶𝑎𝑡𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 
PC2 =0.001 ൈ 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  0.008 ൈ 𝑋𝑔𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  0.996 ൈ 𝐿𝑖𝑔ℎ𝑡𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 െ

0.088 ൈ 𝐶𝑎𝑡𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 
PC3 =0.273 ൈ 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  0.329 ൈ 𝑋𝑔𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 െ 0.082 ൈ 𝐿𝑖𝑔ℎ𝑡𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 െ

0.900 ൈ 𝐶𝑎𝑡𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 
PC4 =0.715 ൈ 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  0.698 ൈ 𝑋𝑔𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  0.033 ൈ 𝐿𝑖𝑔ℎ𝑡𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

0.039 ൈ 𝐶𝑎𝑡𝑏𝑜𝑜𝑠𝑡 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 
𝑃𝐶1 ൌ 0.706 ൈ  𝐴𝑙𝑙 െ 0.004 ൈ  𝑇𝑟𝑎𝑖𝑛 െ 0.708 ൈ 𝑇𝑒𝑠𝑡 

𝑃𝐶2 ൌ െ0.333 ൈ  𝐴𝑙𝑙 െ 0.885 ൈ  𝑇𝑟𝑎𝑖𝑛 െ 0.327 ൈ 𝑇𝑒𝑠𝑡 
𝑃𝐶3 ൌ െ0.625 ൈ  𝐴𝑙𝑙  0.466 ൈ  𝑇𝑟𝑎𝑖𝑛 െ 0.626 ൈ 𝑇𝑒𝑠𝑡 

5. Discussion	

The result of this study reveals several underlying factors that influence the price of house in 
Norwich from 2017 to 2023. It was observed that house property prices consistently risen from 2017 

to 2023 and double. Although property types like detached houses and double-glazed house show the 
highest mean prices (£480), reflecting substantial variability in their market value. However, solar 
panels and loft insulation does not have an effect on the price of houses in Norwich. In terms of regions, 

we observed that South-West Norwich is the region with the most expensive house (£408). Similarly, 
regions like North-West Norwich (£355) and East Norwich (£282) fall within a mid-range price 

bracket, reflecting neighborhoods with mixed housing types and price points.  
The high standard deviation in these areas implies a variety of housing options and potential for 

both lower and higher-end properties. The high variability in garage availability (mean = 0.5, CV = 1.2) 
and the substantial variation in garden size (mean = 169.7 sqm, SD = 160.1, CV = 0.9) suggest that 

these features significantly impact property pricing in Norwich. Additionally, the internal area average 
of 90.2 sqm, combined with pollution levels and noise levels, which exhibit moderate and high 
variability, respectively, points to critical factors that can influence property value and desirability. The 

number of bedrooms, bathrooms, amenities (Resc), garage space, square footage (Sqm), and garden 
size (Gsize) all have positive effects on price, meaning that as these features increase, property prices 

tend to rise. On the other hand, pollution and noise have negative effects on property prices, suggesting 
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that properties in more polluted or noisy areas tend to be cheaper [44]. Larger homes tend to have 
more bedrooms, bathrooms, and amenities, as well as more garage space. On the other hand, 

environmental factors like pollution and noise are strongly correlated, indicating that high levels of 
noise often accompany high pollution, likely in urban areas. However, these factors are not closely 

linked with property characteristics like size or number of rooms, meaning they are more influenced 
by location than the structure of the home itself [45]. While predicting house price, the four models 

used showed a promising result in their performance.  
LightGBM consistently demonstrates the best performance across across the three instances (test, 

train, and Test + Train datasets), with the lowest error metrics and consistently high R-squared values, 
indicating high accuracy and strong generalization. Although, CatBoost also performs exceptionally 

well, particularly on the training set where it achieves nearly perfect results, but its slightly higher 
error metrics on the test set suggest that it doesn’t generalize as well as LightGBM. Both XGBoost and 
Gradient Boosting show similar performance, with XGBoost slightly outperforming Gradient Boosting 

in terms of lower errors and better R-squared values. However, they have higher error metrics 
compared to LightGBM and CatBoost, making them less accurate overall.  

The normality tests conducted on residuals from GradientBoost, XGBoost, LightBoost, and CatBoost 
reveal differing degrees of conformity to normal distribution. The correlation analysis of residuals 

from Gradient Boosting, XGBoost, LightGBM, and CatBoost across the three instances (Train, Test, and 
Test + Train datasets) reveals important insights into their error patterns. Gradient Boosting and 

XGBoost consistently show a strong positive correlation in their residuals, indicating that these models 
tend to make similar errors across all dataset instances. This suggests that they capture similar 

patterns in the data, leading to comparable predictive behavior [46]. Gradient Boosting and CatBoost 
exhibit a moderate correlation in their residuals, particularly on the Test dataset and the Train dataset, 
implying some overlap in their error patterns, though to a lesser extent than between Gradient 

Boosting and XGBoost. Similarly, XGBoost and CatBoost demonstrate a moderate correlation, 
especially in the Test dataset and the Train dataset, indicating that their errors are somewhat aligned.  

The lack of correlation indicates that LightGBM captures different aspects of the data compared to 
Gradient Boosting, XGBoost, and CatBoost. Its unique error patterns make it a potentially valuable 

model for ensembling, as it could offer complementary predictive power by addressing data features 
that the other models may not capture as effectively [47, 48]. The PCA results highlight the importance 

of dimensionality reduction in enhancing model interpretability. With PC1 accounting for over 52% of 
the variance, it suggests that focusing on a few key components can streamline data analysis processes 

while retaining most of the information. 
In conclusion, these results underline the multifaceted nature of predictive modeling and its 

applicability across various domains. The findings not only illustrate the strengths and limitations of 

different models but also highlight the necessity of integrating diverse analytical approaches to 
enhance predictive accuracy. Future research should aim to refine these models further by 

incorporating more extensive datasets and exploring the integration of additional variables that could 
contribute to a deeper understanding of the complex interactions within the data. By advancing these 

methodologies, we can better harness the power of predictive analytics to address real-world 
challenges effectively. 
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