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Abstract: This paper studies three other papers in relation to video games and AI, with a specific focus on 

the use of AI in the game development process. Developers can enhance their workflow through the use of 

procedural content generation, game playing AI and AI playtesting, and AI-powered assistive tools. The 

papers examined include in-depth case studies of specific games and interviews with game developers. This 

paper concludes on the unpredictable but seemingly exciting future for AI and video game development and 

the balance between creativity and automation. 
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1. Introduction 

Over the past century, video games have cemented themselves as not only a successful industry but also as 

a medium for creativity and cultural exchange. Since their advent, numerous new genres, themes, and game-

playing mechanics have appeared in the video gaming world, spurred by rapid progress in computing 

technology. The growing affordability and advancement of consumer-grade hardware has made video gaming 

more accessible and their social influence more profound. Progress in fields such as artificial intelligence has 

also long presented new opportunities for the video game industry, including exciting new means of game 

playing. During the dawn of AI technologies in the 1950s, software was already being created to play simple 

games like Tic-Tac-Toe and chess, while in the contemporary era, AI-related features are frequently involved 

in games such as No Man’s Sky (2016) and Diablo III (2012), as stated by Xia and Ye et al. [1]. 

New innovations in the AI space also present opportunities for game developers themselves. For example, 

the development of experimental game-playing agents can soon help developers play-test their games, 

reducing the need for logistically challenging and potentially expensive human testing. Computing methods 

such as procedural content generation give game developers the chance to implement new and creative 

gameplay mechanics and perhaps reduce the workload of development teams when it comes to asset and 

level creation. Popular video games such as Super Mario Bros. and Angry Birds have served as testbeds of 

video game procedural content generation (for these two games, procedural level generation), according to 

Xia and Ye et al. [1]. In the case of Super Mario Bros., for example, new frameworks and machine learning 

methods allowed for effective level generation and the possibility of co-creation between humans and AI 

agents. 

This paper will explore projects and research regarding the relationship between artificial intelligence and 

video games, including the potential for AI to assist in the game development process. The findings by Risi 

and Preuss [2] will be used to discuss game-playing AI and video game procedural content generation in 

general. Two case studies by Zhao et al. [3] will be used to examine the role of AI in playtesting and providing 
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useful feedback to a development team. Finally, work by Igras-Cybulska et al. [4] will be used to discuss 

developer perspectives on an AI-assistant concept aimed at streamlining the development process for virtual 

reality multiplayer games.  

2. Background 

2.1. Procedural Content Generation 

In the context of video games, procedural content generation is the creation of objects within the game 

through algorithms or computing procedures instead of strictly by hand. This can involve random processes 

but not always. The chart of game AI applications by Risi and Preuss [1] cites levels, maps, assets, and rules 

under procedural content generation. 

A famous example of procedural content generation (specifically, procedural level generation) in video 

games can be seen in Minecraft, the best-selling video game in history as of this writing, according to 

Wikipedia contributors [5]. In the game, “infinite” worlds are created via procedural level generation, 

complete with biomes, terrain features like mountains and seas, man-made structures, and game characters 

(“mobs”). 

The worlds are generated through a pseudo-random process. The way a world generates is determined by 

a seed, such that when the same seed is used to generate two worlds (given that the same version of the game 

is used), the exact same world will result. If no seed is specified upon world creation, a random seed is used. 

Of course, due to computing resource limitations, the “infinite” worlds are not truly geographically infinite 

per se, but large enough such that their limited size will never be of concern to most players. 

It goes without saying that this approach to creating game levels takes much of the work of designing many 

custom levels away from developers, and instead leaves them with the challenge of developing an algorithm 

capable of repeatedly generating unique but reasonable assets and levels. As stated above, procedural content 

generation does not apply only to levels and maps but also to assets in general or even rulesets. For a generic 

example, consider a multiplayer shooter where not only the game maps are different for each match, but also 

the properties of each weapon and the winning objective of the game. 

2.2. Artificial Intelligence Algorithms 

There are many algorithmic procedures applicable to video games and AI, some of which will be discussed 

here. 

Reinforcement learning, according to Risi and Preuss [2], is where “an agent learns to perform a task 

through interactions with its environment and through rewards”. This can be used in conjunction with deep 

neural networks to become deep reinforcement learning, allowing training data to include, as stated by Risi 

and Preuss [2], “high-dimensional sensory systems”. This will be especially applicable to the case studies 

examined in Section 4. 

Risi and Preuss [2] state that evolutionary algorithms seek to emulate real-world biological evolutionary 

processes, creating “candidate solutions” and picking the best ones of each generation to create more, better 

candidates, describing them as a “global optimization method”. This is also applicable to Section 4. 

The A* algorithm is a pathfinding algorithm using a weighted graph to find the optimal path to a certain 

goal. This goal can be an objective in a video game with the graph weights being various scores or parameters 

within the game, such as score accumulation. A heuristic may or may not be used to tailor the algorithm’s 

behavior. Further information about this algorithm can be found in work by Hart et al. [6]. This will be 

discussed further in Section 4. 
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2.3. Assets 

In general terms, an asset in a video game is a component in building the game environment at large. 

Notable examples include 3D models, textures and materials, and sound files. The definition used by Igras-

Cybulska [4] for “assets” is “any reusable components or resources used in video game development. These 

can include a wide range of elements such as code libraries, predesigned graphics, animations, sound effects, 

music tracks, or even pre-built game level designs”. The paper by Igras-Cybulska [4] revolves heavily around 

developing a custom asset utilizing AI to assist Unity game developers. 

3. Game-Playing AI and Procedural Generation 

The study by Risi and Preuss [2] offers an overview of research developments in the relationship between 

artificial intelligence and video games. The paper places much focus on the idea of an AI “learning to play”. 

Two types of “learning to play” are distinguished: that from “states and actions” and that from “pixels”. 

The former is used to describe traditional board games or similar, where the number of valid actions that 

can be taken by a player or an opponent is small such that each action or outcome can be individually 

examined, and the consequences thereof can be analyzed. With a combination of deep learning and the Monte 

Carlo tree search, it was shown that after the machine learning process had been “seeded” (given human 

game data to work off of), algorithms like AlphaGo (an AI agent capable of playing Go on the professional 

level) was essentially able to improve its skill level by playing against itself. This mostly boils down to the 

“states and actions” nature of games like Go–it is reasonable (in terms of computing resources and time) for 

an algorithm to be made that evaluates the current “state” of the game and subsequently evaluates the best 

“action” to take. This type of algorithm has been used to create AI agents that can play games like Chess, Shogi, 

and Poker. Risi and Preuss [2] conclude that in terms of AI algorithms, self-play may not be a silver bullet for 

all games. They are, however, clearly well-suited for board games and card games, possibly due to these games 

having a more reasonable number of possible states and actions such that this kind of algorithmic approach 

is effective. 

The latter, playing from “pixels”, such as with a purely digital video game, has shown to be more complex. 

A method applicable in this case is deep reinforcement learning, which can be used to train AI agents with 

“high-dimensional input such as images, videos or sounds without the need for human design features or 

preprocessing,” as stated by Risi and Preuss [2]. Often, deep reinforcement learning is implemented by 

creating a model of the environment and “thinking ahead” and create a plan for the future. The example given 

by Risi and Preuss [2] is the World Model where an AI agent was able to effectively learn the environment of 

a challenging and complex video game and use it to create a plan for what to do next. Evolutionary algorithms 

are also useful in this area particularly when a game is too difficult to be solved with deep reinforcement 

learning. 

Risi and Preuss [2] also describe the possibility of merging the ideas of “states and actions” and “pixels”. An 

example given is AlphaStar, an AI agent able to play the video game StarCraft at a human level. The “states” 

that are given to the algorithm include the status of various game elements, and the “pixels” includes the 

minimap at the bottom of the interface. The aforementioned self-play is also utilized in AlphaStar, but only 

with the “seeding” of human game data as seen earlier. Risi and Preuss [2] note that these applications of “AI 

playing games” are tailored towards playing specific games rather than learning how to play any given game 

(“General Video Game Playing”). General video game playing, on the other hand, remains an unsolved 

challenge. As video games continue to improve and become more complex, they may have the potential to 

serve as environments to train general intelligence. 

Risi and Preuss [2] reason that procedural content generation can help train AI algorithms (such as game-
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playing AI) to adapt to a variety of different environments and potentially bring them closer to general 

intelligence. 

Although not explicitly discussed by Risi and Preuss [2], these circumstances can prove to be beneficial for 

video game developers. As procedural content generation improves, it is likely that game developers will be 

able to create game levels or maps (or portions thereof) with relative ease. An example of this can be seen in 

the State of Unreal Keynote at Game Developers Conference 2023 [7], where Unreal Engine’s experimental 

procedural content generation tools are demonstrated. Through “procedural assemblies”, the developer is 

able to place large, pre-made objects into a game level, which adapts to the environment around the assembly 

and the positioning of the assembly itself. With the tools shown in the Unreal Engine presentation [7], 

developers and artists only build a portion of the level by hand. This is then scaled up with procedural tools 

which can significantly increase the efficiency of creating and editing large levels. The method of generation 

is deterministic and defined by a set of parameters assigned by the developer. One can interpret the set of 

parameters as a kind of seed for map generation, with the final map being built according to a deterministic 

algorithm for a given seed. In other words, using the exact same generation parameters twice for building a 

map will result in the exact same map being built, with the same trees in the same places and the same rocks 

in the same places, such that a developer can go back to a previously found configuration. Regardless, the 

final result still feels natural and realistic as long as the parameters entered are reasonable (e.g., if one of the 

parameters is tree density, a high value would result in extremely overcrowded tree growth, which doesn’t 

look very natural). As for gameplaying AI, the research by Risi and Preuss [2] is also promising for game 

developers and players. A rather obvious application of more advanced game-playing AI is the creation of 

more robust and realistic teammates and opponents for more immersive and engaging gameplay. As can be 

seen with the following topics, game-playing AI can find a useful role in play-testing as well. 

4. AI for Playtesting Games 

Zhao et al. [3] developed human-level game-playing AI agents that attempt to provide useful feedback to 

game developers, as opposed to simply playing against other humans or playing a game with admirable 

efficiency. The methods used to train these AI agents and evaluate their performance as well as technical 

information and context behind the project are described in great detail by Zhao et al. [3], but this paper will 

focus mainly on some of the ideas at work in the training process, a high-level overview of how the AI agents 

are assessed, and the benefits this could entail for game developers. 

Training such an AI agent requires the observation of game states and for the agent to make decisions based 

on these observations. It is noted by Zhao et al. [3] that using a frame buffer for such a purpose is inefficient, 

and that a “lower-dimensional engineered representation of game state” was created instead. Methods used 

to achieve this include abstraction to create smaller models of the environment and running the game at a 

higher clock speed. 

The paper by Zhao et al. [3] includes two case studies involving “playtesting AI agents”: one for providing 

feedback on player experience and one for providing feedback on player progression. 

An important note made by Zhao et al. [3] is that these studies aim to model how a human would play the 

game rather than attempting to achieve a maximally impressive, potentially inhuman result. It is thus that the 

resulting data can be of value to game designers. 

The Electronic Arts game The Sims Mobile is used by Zhao et al. [3] for studying the former case as the 

game environment is more lax in terms of objectives–there is no set path to take per se, and the game interface 

is designed such that a simple model of the game state can be created for efficient training. Furthermore, the 

player has the option to select different” careers” which determine the experience a player will have. These 

career paths have goals that are relatively easy to model and could realistically be achieved by an AI agent. 
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Ideally, each career choice should be roughly the same difficulty, determining which would require playtesting. 

Zhao et al. [3] studies the methodology and feasibility of gaining this information via an AI agent as opposed 

to human testers. 

To accomplish this, a heuristic value with a weighted sum is created to correlate with a player’s progress, 

which is used with an A* algorithm. An example of such a weighted sum would be that of the career level, 

experience points, and number of finished events. With knowledge of the full game state and with the game 

mechanics being fully deterministic, a state transition graph can be used to model the game, which can be 

solved via the A* algorithm. As mentioned in Section 2, this algorithm is commonly associated with 

pathfinding, making it appropriate in this scenario. The heuristic value can be customized based on what part 

of the game the developers intend to observe or study, such as the number of “appointments” needed to 

complete each career. 

The evolutionary strategy solution of an optimization problem model of career progression is used for 

comparison with the A* results. Rather than using a heuristic, this solution attempts” to achieve a high 

environment reward against selected objective, e.g., reach the end of a career track while maximizing earned 

career event points “as stated by Zhao et al. [3]. The agent will make actions” based on a probabilistic policy 

by taking a softmax on the utility...measure of all the actions in a game state,” according to Zhao et al. [3] The 

measure of utility is used as the grounds for an “action selection mechanism.” Zhao et al. [3] continues by 

stating that an evaluation function is defined and that function is optimized against. The mathematical basis 

for such a solution is thoroughly described by Zhao et al. [3] and thus won’t be repeated here. 

When the results of both methods are compared, the A* algorithm and the evolutionary strategy performed 

similarly in many career choices, with one notable outlier being the Barista career. In this case, the 

evolutionary strategy approach performs significantly more actions (279) compared to the A* algorithm (75). 

Zhao et al. [3] states that “this can be from the fact that this career has an action that does not reward 

experience by itself, but rather enables another action that does it. This action can be repeated often and can 

explain the high numbers”. It can be inferred that the A* algorithm did not elect to repeat these actions. 

Additionally, given the nature of the A* algorithm, agents utilizing it play in a manner with no variance. The 

evolutionary strategy agent results in high variance. Therefore, many runs are needed in order for meaningful 

results to be produced. In the study by Zhao et al. [3], 2,000 runs were used. 

Fig. 1 in the paper by Zhao et al. [3] shows four careers and the number of actions needed to complete them 

using both A* and the evolution strategy. Based on the output data, the culinary, fashion, and medical careers 

are of similar difficulty, and the number of actions needed to complete them varies little on play style. There 

is evidence to suggest the barista career’s difficulty may depend on the style of play as there is a significant 

difference between the A* algorithm and evolution strategy results, as mentioned above. 

 

Fig. 1. Number of actions needed to complete a given career path using A* versus the prediction strategy as 

shown by Zhao et al. [3]. 
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The second study by Zhao et al. [3] about AI playtesting is in regards to “measuring competent player 

progression”. The study concerns an unspecified “real-time multi-player mobile game, with a stochastic 

environment and sequential action”. This game is more elaborate than The Sims Mobile, thus requiring more 

skillful strategies in order for the player to succeed. The game involves resource collection and management 

with the aim of leveling up to progress through the game. Players may also perform upgrades requiring 

resources; whether or not an upgrade is possible with the player’s current resources is available information. 

This second case study aims to examine how an AI agent would progress through the game, that is, how it 

balances resources and makes strategic decisions for the developer to get a feel for how a human would play 

the game. 

Zhao et al. [3] uses a “simplified state space that contains information about the early game”. There are only 

about 150 continuous and discrete variables in the simplified state space. There are also only about 25” action 

classes”, from which actions can be generated. These actions may not be valid at all times as their validity 

depends on the present game state. Whether or not an action is valid may not be known information to the 

player. If an invalid action is attempted, nothing will happen in-game. 

The training process involves evaluating valid and invalid actions with the goal being an agent that takes 

actions and therefore behaves like a human. A feedforward neural network is used in the process with two 

hidden layers, each with 256 neurons. 

An “episode” is created and defined as a goal in the game that could be reached by a skilled human player 

within a certain time frame. The agent then attempts to perform actions, some of which may be invalid, one 

of which is defined as “do nothing”. A “rewarding mechanism” assigns scores to the actions the agent attempts. 

For example, one point (a “+1” reward) is added when a goal is reached, one point is deducted (“−1” reward) 

when an invalid action is attempted, no points (“0” reward) are given for valid actions, and 0.1 points are 

deducted (“−0.1” reward) when the “do nothing” action is attempted. 

Zhao et al. [3] uses two versions of the observation space, one “naive” and one “augmented.” The naive state 

space only considers information that is readily available to the player, that is, it can be immediately seen on 

the game interface. The augmented observation space includes the naive state space but also” information 

the agent would infer and retain from current and previous gameplays”. 

 

 

Fig. 2. Graphs showing the average cumulative reward for each agent during training and evaluation. The X-

axis is the number of iterations as shown by Zhao et al. [3]. 

 

Four types of agents were trained in this study and their average cumulative return (the previously 

mentioned rewards) were recorded as a function of the number of iterations, each worth about 60 min of 

playtime. The average return is capped at 1 because this would indicate a goal having been reached, though 

this may sometimes be impossible as in some circumstances negative rewards are inevitable. 

The four agents are: two Deep Q Network (DQN) agents, one with a complete state space (1), the other with 
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an augmented observation space (3); two Rainbow (an agent shown to perform better than the standard DQN 

in a publication by Hessel et al. [8]) agents, one with complete state space (2), the other with augmented 

observation space (4). Rainbow and DQNs are model-free reinforcement learning methods that train agents 

to seek a “reward” given when favorable actions are performed (Rainbow is actually an extension to the 

standard DQN methodology with expanded functionality, see the paper by Hessel et al. [8] for further 

information). Zhao et al. [3] points out that a benefit of DQNs is that they” can use convolutional function 

approximators as a general representation learning framework from the pixels in a frame buffer without need 

for task-specific feature engineering”. 

It should be noted that the complete state space contains information not available to the regular human 

player and is therefore likely being used as a control to test the augmented observation space results against. 

Zhao et al. [3] defines augmented spaces as “the space observable by humans in addition to inferred 

information, which is much smaller than the complete space”. Therefore, a poorer result is expected from the 

augmented space tests than the complete state space. 

The results align with these expectations, with the augmented observation space performing worse than 

the complete state space. It was found that “the agent keeps attempting invalid actions in some cases as the 

state remains mostly unchanged after each attempt and the policy is (almost) deterministic”. A graphical 

representation of the results can be seen in Fig. 2. 

As for feedback to game developers, Zhao et al. [3] states that the data indicates that a human would likely 

have trouble keeping up with such a complex set of actions and their validity. This was further confirmed 

through additional (real) human testing- that the game interface and how it presented actions and their 

validity needed to improve such as to not hinder a human player’s progress. 

It is noted that the methods used in the above case study are not especially time efficient. Zhao et al. [3] 

hopes that once the game is released that it would be possible to use human play data to experiment with 

imitation learning, making the training process for these agents more efficient. 

5. AI Assistance in Developer Workflows 

There is a recent paper by Igras-Cybulska et al. [4] that explores the prospect of AI tools being directly 

implemented in game development engines, assisting developers in asset creation and debugging processes. 

This study is notable as it contains feedback from actual game developers which could be of great help should 

these AI tools be pursued or popularized. The tool developed and evaluated by Igras-Cybulska [4] is a 

Metaverse Unity Networking (MUN) asset that uses AI “to facilitate the development of multiplayer VR games 

in Unity, thereby addressing identified challenges”. 

The MUN asset discussed by Igras-Cybulska [4] is” supported by a dual component AI framework” which 

contains a recommendation engine to help with debugging and programming and a behavior analytics system 

to make NPC avatars behave more believably and realistically in a virtual reality environment. 

The next part of the paper considers an “exploratory study” of game developers using the Unity game 

engine to get an idea of developers’ expectations and feedback regarding AI-based game assets, including 

potential automation and quality-of-life features. 

The study included interviews with various developers, sampled to encompass a diverse range of 

experience levels and backgrounds. These interviews concerned challenges and obstacles developers face, 

the typical workflows of game developers, and ideas for potential solutions in the form of” supportive assets.” 

These interviews by Igras-Cybulska et al. [4] concluded with the following key points: the testing phase of 

multiplayer game development often carries the most challenges and thus an asset would be helpful. The 

asset should be within the control of the developers at all times (e.g. its actions must be approved of by the 

developers) and it should adjust its behavior to fit a developer’s needs. The asset can perform “monotonous 
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tasks requiring speed and infallibility” automatically, again with developer approval. While the asset can 

perform these mundane tasks “devoid of creativity” fully automated, they should not hinder creative 

processes and leave that area fully open to developer input. The potential for a voice assistant is not popular 

among the developers interviewed. Ideally, the asset should provide real-time, up-to-date feedback, give 

detailed suggestions as opposed to “binary judgments”, and include a “search engine” similar to that of the 

website Stack Overflow. The asset must act as a “supportive assistant rather than an authoritative future”, 

leaving room for the developer’s own ideas and potential rejection of the assistant’s suggestions altogether. 

A focus group interview was also conducted, in which three participants discussed concepts for an “ideal 

asset,” weighing the positives and negatives of potential ideas, to develop a reasonable approach to tackle the 

challenges and expectations of developers in the context of such an AI asset. The key points cited by Igras-

Cybulska et al. [4] (which were discussed during the study) include the following: a sort of modular approach 

for game elements like server hosting and matchmaking that can be “easily integrated into games”, with a 

lookup tool to find solutions via a “classification system quickly”. The case of visually representing developer 

tasks and workflows was seen positively, with the concept of “step-by-step guides” and visual bot design tools 

(to simulate real players) being suggested. Recommendations by an AI asset should be implemented in a 

manner that is friendly to the developer, that is, easily accessible and quality-of-life focused, such as 

suggestions next to faulting code or the integration of interactive tutorials as part of recommendations, such 

to create not only a solution but a learning experience for developers. The asset’s error-handling role should 

not be fully automated and should not be disruptive of the developer’s work. 

The work by Igras-Cybulska et al. [4] also concludes that many developers were hesitant to use new assets 

due to poor experiences with existing assets where the result of their features was underwhelming, the 

possible learning curve needed to learn such assets, and frequently inadequate documentation for new 

software. 

In the context of the above observations, the aforementioned MUN asset is presented as the solution by 

Igras-Cybulska et al. [4]. The asset has features such as partial automation of the development process, a 

motion library to create realistic interactions and multiplayer systems more conveniently, and resources for 

server management in a VR multiplayer environment. 

Igras-Cybulska et al. [4] indicates two main fields in which the AI in the MUN asset was applied: a 

recommendation system and a movement analysis system. The recommendation system is essentially a code 

correction and suggestion assistant that boasts impressive accuracy in the testing described by Igras-

Cybulska et al. [4]. This should hopefully take much of the workload of mundane programming and debugging 

off developers, leaving them with more time to develop more creative aspects of the game. 

The “automatic movement detection and prediction feature” utilizes machine learning to analyze body 

motion of users which creates for a more immersive VR experience, owing to its ability to accurately predict 

user movements. 

Developers interviewed by Igras-Cybulska et al. [4] stated that their most favored features of the MUN asset 

included “ready-made prefabs”, tutorials to aid in the development process, and automated code review 

features. Igras-Cybulska et al. [4] concludes that the best AI-powered asset for game developers would be one 

with a significant degree of personalization capabilities and programming assistance tools (such as the 

recommendation engine). 

The MUN asset is currently published online on the project’s GitLab Repository by Babiuch [9]. 

6. Conclusion 

There is no doubt that the rapid development of AI technologies in the past decades has led to new 

advancements in video game development, and will likely continue to do so. Complex machine learning 
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techniques like reinforcement learning are becoming more popular, and the video game industry is still 

growing stronger. Not only are game-playing AI agents able to play traditional, “states and action” oriented 

games but also video games that involve a user interface and continuously evolving, multi-dimensional 

environment, as seen in the study by Risi and Preuss [2]. New procedural content generation technologies 

can also help game developers build game levels, making the development process more efficient. Such a 

technology can be seen in the Unreal Engine Keynote [7], and based on developer interviews and feedback 

collected by Igras-Cybulska et al. [4], there also appears to be demand for such tools related to “readymade 

prefabs”. 

The potential for game-playing AI as a means to playtest video games while they are in development is 

explored in the study by Zhao et al. [3]. This paper covered two of the case studies presented by  

Zhao et al. [3], each demonstrating how modern AI methodologies can be used to give useful feedback to 

developers. In the study by Igras-Cybulska et al. [4], interviewees expressed that the testing phase is among 

the most challenging parts of game development, and thus this was a prime consideration when developing 

AI assets that would assist developers. The demonstrations by Zhao et al.  [3] are tailored to specific games 

in somewhat idealized circumstances, and were designed to work in games that did not focus on VR. However, 

the basis for these studies (such as the idea of creating simplified game state representations and certain 

concerns regarding computing resources) can likely be widely applied, and the computing procedures have 

a relatively general application (e.g., the A* algorithm). Thus, the approach and methodologies by  

Zhao et al. [3] would likely be a good starting point for creating developer-assistant assets like those 

described by Igras-Cybulska et al. [4]. 

An emphasis made by Igras-Cybulska et al. [4] is that game developers are concerned about AI assets and 

tools potentially being too controlling or eventually stunting creative potential. A point is made that 

automated or assisted tasks should only be the most mundane and repetitive such as server setup and 

programming, such that more time can be allocated to more creative pursuits. In a way, this relates to the idea 

of procedural content generation for maps and the question of whether the creation of large worlds is 

considered mundane work or a strictly creative construct that should be out of reach of automation tools. In 

the Keynote by Unreal Engine [7], the demonstration uses a base of hand-built assets by artists before “scaling 

up” the world using procedural content generation, as determined by a set of parameters. While populating 

most of the level via procedural content generation, the procedural assemblies used are still created manually. 

This can potentially be seen as a balance between automating repetitive tasks (after all, adding similar rock 

formations and trees across a map in a pseudo-random way by hand is extremely tedious and likely isn’t 

creatively stimulating) and preserving the creative freedom of game designers and artists. 

It is likely that progress in the field of AI and video games will only continue to accelerate. Powerful 

computing hardware will likely become more accessible, making studies like those seen in the study by  

Zhao et al. [3] more applicable. As indicated by Risi and Preuss [2], procedural content generation tools have 

the potential to provide grounds for the development and testing of different AI solutions, and perhaps even 

general game-playing AI in the future. Software like the MUN asset described by Igras-Cybulska et al. [4] are 

already being released onto the market, with the developer interviews showing considerable demand in this 

space. While the future of any field of study is without doubt uncertain, the reader should view the future of 

AI and video games, especially the role of AI in assisting developers with their workflow, with a degree of 

optimism. 
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